numpy.ma.is_mask(m) [source]
Return True if m is a valid, standard mask.
This function does not check the contents of the input, only that the type is MaskType. In particular, this function returns False if the mask has a flexible dtype.
| Parameters: |
m : array_like Array to test. |
|---|---|
| Returns: |
result : bool True if |
See also
isMaskedArray >>> import numpy.ma as ma
>>> m = ma.masked_equal([0, 1, 0, 2, 3], 0)
>>> m
masked_array(data = [-- 1 -- 2 3],
mask = [ True False True False False],
fill_value=999999)
>>> ma.is_mask(m)
False
>>> ma.is_mask(m.mask)
True
Input must be an ndarray (or have similar attributes) for it to be considered a valid mask.
>>> m = [False, True, False] >>> ma.is_mask(m) False >>> m = np.array([False, True, False]) >>> m array([False, True, False], dtype=bool) >>> ma.is_mask(m) True
Arrays with complex dtypes don’t return True.
>>> dtype = np.dtype({'names':['monty', 'pithon'],
'formats':[np.bool, np.bool]})
>>> dtype
dtype([('monty', '|b1'), ('pithon', '|b1')])
>>> m = np.array([(True, False), (False, True), (True, False)],
dtype=dtype)
>>> m
array([(True, False), (False, True), (True, False)],
dtype=[('monty', '|b1'), ('pithon', '|b1')])
>>> ma.is_mask(m)
False
© 2008–2017 NumPy Developers
Licensed under the NumPy License.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.ma.is_mask.html