Defined in header <algorithm> | ||
|---|---|---|
| (1) | ||
template< class ForwardIt > void rotate( ForwardIt first, ForwardIt n_first, ForwardIt last ); | (until C++11) | |
template< class ForwardIt > ForwardIt rotate( ForwardIt first, ForwardIt n_first, ForwardIt last ); | (since C++11) | |
template< class ExecutionPolicy, class ForwardIt > ForwardIt rotate( ExecutionPolicy&& policy, ForwardIt first, ForwardIt n_first, ForwardIt last ); | (2) | (since C++17) |
std::rotate swaps the elements in the range [first, last) in such a way that the element n_first becomes the first element of the new range and n_first - 1 becomes the last element. [first, n_first) and [n_first, last) are valid ranges.policy. This overload does not participate in overload resolution unless std::is_execution_policy_v<std::decay_t<ExecutionPolicy>> is true| first | - | the beginning of the original range |
| n_first | - | the element that should appear at the beginning of the rotated range |
| last | - | the end of the original range |
| policy | - | the execution policy to use. See execution policy for details. |
| Type requirements | ||
-ForwardIt must meet the requirements of ValueSwappable and ForwardIterator. |
||
-The type of dereferenced ForwardIt must meet the requirements of MoveAssignable and MoveConstructible. |
||
| (none). | (until C++11) |
| The iterator equal to | (since C++11) |
Linear in the distance between first and last.
The overload with a template parameter named ExecutionPolicy reports errors as follows:
ExecutionPolicy is one of the three standard policies, std::terminate is called. For any other ExecutionPolicy, the behavior is implementation-defined. std::bad_alloc is thrown. template <class ForwardIt>
ForwardIt rotate(ForwardIt first, ForwardIt n_first, ForwardIt last)
{
if(first == n_first) return last;
if(n_first == last) return first;
ForwardIt next = n_first;
do {
std::iter_swap(first++, next++);
if (first == n_first) n_first = next;
}
while (next != last);
ForwardIt ret = first;
for(next = n_first; next != last; ) {
std::iter_swap(first++, next++);
if(first == n_first) n_first = next;
else if(next == last) next = n_first;
}
return ret;
} |
std::rotate is a common building block in many algorithms. This example demonstrates insertion sort:
#include <vector>
#include <iostream>
#include <algorithm>
int main()
{
std::vector<int> v{2, 4, 2, 0, 5, 10, 7, 3, 7, 1};
std::cout << "before sort: ";
for (int n: v)
std::cout << n << ' ';
std::cout << '\n';
// insertion sort
for (auto i = v.begin(); i != v.end(); ++i) {
std::rotate(std::upper_bound(v.begin(), i, *i), i, i+1);
}
std::cout << "after sort: ";
for (int n: v)
std::cout << n << ' ';
std::cout << '\n';
// simple rotation to the left
std::rotate(v.begin(), v.begin() + 1, v.end());
std::cout << "simple rotate left : ";
for (int n: v)
std::cout << n << ' ';
std::cout << '\n';
// simple rotation to the right
std::rotate(v.rbegin(), v.rbegin() + 1, v.rend());
std::cout << "simple rotate right : ";
for (int n: v)
std::cout << n << ' ';
std::cout << '\n';
}Output:
before sort: 2 4 2 0 5 10 7 3 7 1 after sort: 0 1 2 2 3 4 5 7 7 10 simple rotate left : 1 2 2 3 4 5 7 7 10 0 simple rotate right: 0 1 2 2 3 4 5 7 7 10
| copies and rotate a range of elements (function template) |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/algorithm/rotate