This header is part of the dynamic memory management library.
Smart pointers categories |
|
|
(C++11) | smart pointer with unique object ownership semantics (class template) |
|
(C++11) | smart pointer with shared object ownership semantics (class template) |
|
(C++11) | weak reference to an object managed by std::shared_ptr (class template) |
|
(until C++17) | smart pointer with strict object ownership semantics (class template) |
Helper classes |
|
|
(C++11) | provides mixed-type owner-based ordering of shared and weak pointers (class template) |
|
(C++11) | allows an object to create a shared_ptr referring to itself (class template) |
|
(C++11) | exception thrown when accessing a weak_ptr which refers to already destroyed object (class) |
|
(C++11) | default deleter for unique_ptr (class template) |
Allocators |
|
| the default allocator (class template) |
|
|
(C++11) | provides information about allocator types (class template) |
|
(C++11) | tag type used to select allocator-aware constructor overloads (class) |
|
(C++11) | an object of type std::allocator_arg_t used to select allocator-aware constructors (constant) |
|
(C++11) | checks if the specified type supports uses-allocator construction (class template) |
Uninitialized storage |
|
| copies a range of objects to an uninitialized area of memory (function template) |
|
|
(C++11) | copies a number of objects to an uninitialized area of memory (function template) |
| copies an object to an uninitialized area of memory, defined by a range (function template) |
|
| copies an object to an uninitialized area of memory, defined by a start and a count (function template) |
|
|
(C++17) | moves a range of objects to an uninitialized area of memory (function template) |
|
(C++17) | moves a number of objects to an uninitialized area of memory (function template) |
|
(C++17) | constructs objects by default-initialization in an uninitialized area of memory, defined by a range (function template) |
|
(C++17) | constructs objects by default-initialization in an uninitialized area of memory, defined by a start and a count (function template) |
|
(C++17) | constructs objects by value-initialization in an uninitialized area of memory, defined by a range (function template) |
|
(C++17) | constructs objects by value-initialization in an uninitialized area of memory, defined by a start and a count (function template) |
|
(C++17) | destroys an object at a given address (function template) |
|
(C++17) | destroys a range of objects (function template) |
|
(C++17) | destroys a number of objects in a range (function template) |
|
(deprecated in C++17) | an iterator that allows standard algorithms to store results in uninitialized memory (class template) |
|
(deprecated in C++17) | obtains uninitialized storage (function template) |
|
(deprecated in C++17) | frees uninitialized storage (function template) |
Garbage collector support |
|
|
(C++11) | declares that an object can not be recycled (function) |
|
(C++11) | declares that an object can be recycled (function template) |
|
(C++11) | declares that a memory area does not contain traceable pointers (function) |
|
(C++11) | cancels the effect of std::declare_no_pointers (function) |
|
(C++11) | lists pointer safety models (class) |
|
(C++11) | returns the current pointer safety model (function) |
Miscellaneous |
|
|
(C++11) | provides information about pointer-like types (class template) |
|
(C++11) | obtains actual address of an object, even if the & operator is overloaded (function template) |
|
(C++11) | aligns a pointer in a buffer (function) |
Smart pointer non-member operations |
|
|
(C++14) | creates a unique pointer that manages a new object (function template) |
compares to another unique_ptr or with nullptr (function template) |
|
| creates a shared pointer that manages a new object (function template) |
|
| creates a shared pointer that manages a new object allocated using an allocator (function template) |
|
|
(C++17) | applies static_cast, dynamic_cast, const_cast, or reinterpret_cast to the stored pointer (function template) |
| returns the deleter of specified type, if owned (function template) |
|
compares with another shared_ptr or with nullptr (function template) |
|
| outputs the value of the stored pointer to an output stream (function template) |
|
specializes atomic operations for std::shared_ptr (function template) |
|
|
(C++11) | specializes the std::swap algorithm (function template) |
|
(C++11) | specializes the std::swap algorithm (function template) |
|
(C++11) | specializes the std::swap algorithm (function template) |
Smart pointer helper classes |
|
|
(C++11) | hash support for std::unique_ptr (class template specialization) |
|
(C++11) | hash support for std::shared_ptr (class template specialization) |
namespace std {
// pointer traits
template <class Ptr> struct pointer_traits;
template <class T> struct pointer_traits<T*>;
// pointer safety
enum class pointer_safety { relaxed, preferred, strict };
void declare_reachable(void* p);
template <class T> T* undeclare_reachable(T* p);
void declare_no_pointers(char* p, size_t n);
void undeclare_no_pointers(char* p, size_t n);
pointer_safety get_pointer_safety() noexcept;
// pointer alignment function
void* align(size_t alignment, size_t size, void*& ptr, size_t& space);
// allocator argument tag
struct allocator_arg_t { explicit allocator_arg_t() = default; };
constexpr allocator_arg_t allocator_arg{};
// uses_allocator
template <class T, class Alloc> struct uses_allocator;
// allocator traits
template <class Alloc> struct allocator_traits;
// the default allocator
template <class T> class allocator;
template <class T, class U>
bool operator==(const allocator<T>&, const allocator<U>&) noexcept;
template <class T, class U>
bool operator!=(const allocator<T>&, const allocator<U>&) noexcept;
// specialized algorithms
template <class T> constexpr T* addressof(T& r) noexcept;
template <class T> const T* addressof(const T&&) = delete;
template <class ForwardIterator>
void uninitialized_default_construct(ForwardIterator first, ForwardIterator last);
template <class ExecutionPolicy, class ForwardIterator>
void uninitialized_default_construct(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last);
template <class ForwardIterator, class Size>
ForwardIterator uninitialized_default_construct_n(ForwardIterator first, Size n);
template <class ExecutionPolicy, class ForwardIterator, class Size>
ForwardIterator uninitialized_default_construct_n(ExecutionPolicy&& exec,
ForwardIterator first, Size n);
template <class ForwardIterator>
void uninitialized_value_construct(ForwardIterator first, ForwardIterator last);
template <class ExecutionPolicy, class ForwardIterator>
void uninitialized_value_construct(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last);
template <class ForwardIterator, class Size>
ForwardIterator uninitialized_value_construct_n(ForwardIterator first, Size n);
template <class ExecutionPolicy, class ForwardIterator, class Size>
ForwardIterator uninitialized_value_construct_n(ExecutionPolicy&& exec,
ForwardIterator first, Size n);
template <class InputIterator, class ForwardIterator>
ForwardIterator uninitialized_copy(InputIterator first, InputIterator last,
ForwardIterator result);
template <class ExecutionPolicy, class InputIterator, class ForwardIterator>
ForwardIterator uninitialized_copy(ExecutionPolicy&& exec,
InputIterator first, InputIterator last,
ForwardIterator result);
template <class InputIterator, class Size, class ForwardIterator>
ForwardIterator uninitialized_copy_n(InputIterator first, Size n,
ForwardIterator result);
template <class ExecutionPolicy, class InputIterator, class Size, class ForwardIterator>
ForwardIterator uninitialized_copy_n(ExecutionPolicy&& exec,
InputIterator first, Size n,
ForwardIterator result);
template <class InputIterator, class ForwardIterator>
ForwardIterator uninitialized_move(InputIterator first, InputIterator last,
ForwardIterator result);
template <class ExecutionPolicy, class InputIterator, class ForwardIterator>
ForwardIterator uninitialized_move(ExecutionPolicy&& exec,
InputIterator first, InputIterator last,
ForwardIterator result);
template <class InputIterator, class Size, class ForwardIterator>
pair<InputIterator, ForwardIterator>
uninitialized_move_n(InputIterator first, Size n, ForwardIterator result);
template <class ExecutionPolicy, class InputIterator, class Size, class ForwardIterator>
pair<InputIterator, ForwardIterator>
uninitialized_move_n(ExecutionPolicy&& exec,
InputIterator first, Size n, ForwardIterator result);
template <class ForwardIterator, class T>
void uninitialized_fill(ForwardIterator first, ForwardIterator last, const T& x);
template <class ExecutionPolicy, class ForwardIterator, class T>
void uninitialized_fill(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last, const T& x);
template <class ForwardIterator, class Size, class T>
ForwardIterator uninitialized_fill_n(ForwardIterator first, Size n, const T& x);
template <class ExecutionPolicy, class ForwardIterator, class Size, class T>
ForwardIterator uninitialized_fill_n(ExecutionPolicy&& exec,
ForwardIterator first, Size n, const T& x);
template <class T>
void destroy_at(T* location);
template <class ForwardIterator>
void destroy(ForwardIterator first, ForwardIterator last);
template <class ExecutionPolicy, class ForwardIterator>
void destroy(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last);
template <class ForwardIterator, class Size>
ForwardIterator destroy_n(ForwardIterator first, Size n);
template <class ExecutionPolicy, class ForwardIterator, class Size>
ForwardIterator destroy_n(ExecutionPolicy&& exec, ForwardIterator first, Size n);
// class template unique_ptr
template <class T> struct default_delete;
template <class T> struct default_delete<T[]>;
template <class T, class D = default_delete<T>> class unique_ptr;
template <class T, class D> class unique_ptr<T[], D>;
template <class T, class... Args> unique_ptr<T> make_unique(Args&&... args);
template <class T> unique_ptr<T> make_unique(size_t n);
template <class T, class... Args> /*unspecified*/ make_unique(Args&&...) = delete;
template <class T, class D> void swap(unique_ptr<T, D>& x, unique_ptr<T, D>& y) noexcept;
template <class T1, class D1, class T2, class D2>
bool operator==(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);
template <class T1, class D1, class T2, class D2>
bool operator!=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);
template <class T1, class D1, class T2, class D2>
bool operator<(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);
template <class T1, class D1, class T2, class D2>
bool operator<=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);
template <class T1, class D1, class T2, class D2>
bool operator>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);
template <class T1, class D1, class T2, class D2>
bool operator>=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);
template <class T, class D>
bool operator==(const unique_ptr<T, D>& x, nullptr_t) noexcept;
template <class T, class D>
bool operator==(nullptr_t, const unique_ptr<T, D>& y) noexcept;
template <class T, class D>
bool operator!=(const unique_ptr<T, D>& x, nullptr_t) noexcept;
template <class T, class D>
bool operator!=(nullptr_t, const unique_ptr<T, D>& y) noexcept;
template <class T, class D>
bool operator<(const unique_ptr<T, D>& x, nullptr_t);
template <class T, class D>
bool operator<(nullptr_t, const unique_ptr<T, D>& y);
template <class T, class D>
bool operator<=(const unique_ptr<T, D>& x, nullptr_t);
template <class T, class D>
bool operator<=(nullptr_t, const unique_ptr<T, D>& y);
template <class T, class D>
bool operator>(const unique_ptr<T, D>& x, nullptr_t);
template <class T, class D>
bool operator>(nullptr_t, const unique_ptr<T, D>& y);
template <class T, class D>
bool operator>=(const unique_ptr<T, D>& x, nullptr_t);
template <class T, class D>
bool operator>=(nullptr_t, const unique_ptr<T, D>& y);
// class bad_weak_ptr
class bad_weak_ptr;
// class template shared_ptr
template<class T> class shared_ptr;
// shared_ptr creation
template<class T, class... Args> shared_ptr<T> make_shared(Args&&... args);
template<class T, class A, class... Args>
shared_ptr<T> allocate_shared(const A& a, Args&&... args);
// shared_ptr comparisons
template<class T, class U>
bool operator==(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept;
template<class T, class U>
bool operator!=(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept;
template<class T, class U>
bool operator<(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept;
template<class T, class U>
bool operator>(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept;
template<class T, class U>
bool operator<=(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept;
template<class T, class U>
bool operator>=(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept;
template <class T>
bool operator==(const shared_ptr<T>& x, nullptr_t) noexcept;
template <class T>
bool operator==(nullptr_t, const shared_ptr<T>& y) noexcept;
template <class T>
bool operator!=(const shared_ptr<T>& x, nullptr_t) noexcept;
template <class T>
bool operator!=(nullptr_t, const shared_ptr<T>& y) noexcept;
template <class T>
bool operator<(const shared_ptr<T>& x, nullptr_t) noexcept;
template <class T>
bool operator<(nullptr_t, const shared_ptr<T>& y) noexcept;
template <class T>
bool operator<=(const shared_ptr<T>& x, nullptr_t) noexcept;
template <class T>
bool operator<=(nullptr_t, const shared_ptr<T>& y) noexcept;
template <class T>
bool operator>(const shared_ptr<T>& x, nullptr_t) noexcept;
template <class T>
bool operator>(nullptr_t, const shared_ptr<T>& y) noexcept;
template <class T>
bool operator>=(const shared_ptr<T>& x, nullptr_t) noexcept;
template <class T>
bool operator>=(nullptr_t, const shared_ptr<T>& y) noexcept;
// shared_ptr specialized algorithms
template<class T> void swap(shared_ptr<T>& a, shared_ptr<T>& b) noexcept;
// shared_ptr casts
template<class T, class U>
shared_ptr<T> static_pointer_cast(const shared_ptr<U>& r) noexcept;
template<class T, class U>
shared_ptr<T> dynamic_pointer_cast(const shared_ptr<U>& r) noexcept;
template<class T, class U>
shared_ptr<T> const_pointer_cast(const shared_ptr<U>& r) noexcept;
// shared_ptr get_deleter
template<class D, class T> D* get_deleter(const shared_ptr<T>& p) noexcept;
// shared_ptr I/O
template<class E, class T, class Y>
basic_ostream<E, T>& operator<< (basic_ostream<E, T>& os, const shared_ptr<Y>& p);
// class template weak_ptr
template<class T> class weak_ptr;
// weak_ptr specialized algorithms
template<class T> void swap(weak_ptr<T>& a, weak_ptr<T>& b) noexcept;
// class template owner_less
template<class T = void> struct owner_less;
// class template enable_shared_from_this
template<class T> class enable_shared_from_this;
// shared_ptr atomic access
template<class T>
bool atomic_is_lock_free(const shared_ptr<T>* p);
template<class T>
shared_ptr<T> atomic_load(const shared_ptr<T>* p);
template<class T>
shared_ptr<T> atomic_load_explicit(const shared_ptr<T>* p, memory_order mo);
template<class T>
void atomic_store(shared_ptr<T>* p, shared_ptr<T> r);
template<class T>
void atomic_store_explicit(shared_ptr<T>* p, shared_ptr<T> r, memory_order mo);
template<class T>
shared_ptr<T> atomic_exchange(shared_ptr<T>* p, shared_ptr<T> r);
template<class T>
shared_ptr<T> atomic_exchange_explicit(shared_ptr<T>* p, shared_ptr<T> r,
memory_order mo);
template<class T>
bool atomic_compare_exchange_weak(shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w);
template<class T>
bool atomic_compare_exchange_strong(shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w);
template<class T>
bool atomic_compare_exchange_weak_explicit(shared_ptr<T>* p, shared_ptr<T>* v,
shared_ptr<T> w, memory_order success,
memory_order failure);
template<class T>
bool atomic_compare_exchange_strong_explicit(shared_ptr<T>* p, shared_ptr<T>* v,
shared_ptr<T> w, memory_order success,
memory_order failure);
// hash support
template <class T> struct hash;
template <class T, class D> struct hash<unique_ptr<T, D>>;
template <class T> struct hash<shared_ptr<T>>;
// uses_allocator
template <class T, class Alloc>
constexpr bool uses_allocator_v = uses_allocator<T, Alloc>::value;
}std::pointer_traits
namespace std {
template <class Ptr> struct pointer_traits {
using pointer = Ptr;
using element_type = /*see definition*/ ;
using difference_type = /*see definition*/ ;
template <class U> using rebind = /*see definition*/ ;
static pointer pointer_to(/*see definition*/ r);
};
template <class T> struct pointer_traits<T*> {
using pointer = T*;
using element_type = T;
using difference_type = ptrdiff_t;
template <class U> using rebind = U*;
static pointer pointer_to(/*see definition*/ r) noexcept;
};
}std::allocator_traits
namespace std {
template <class Alloc> struct allocator_traits {
using allocator_type = Alloc;
using value_type = typename Alloc::value_type;
using pointer = /*see definition*/ ;
using const_pointer = /*see definition*/ ;
using void_pointer = /*see definition*/ ;
using const_void_pointer = /*see definition*/ ;
using difference_type = /*see definition*/ ;
using size_type = /*see definition*/ ;
using propagate_on_container_copy_assignment = /*see definition*/ ;
using propagate_on_container_move_assignment = /*see definition*/ ;
using propagate_on_container_swap = /*see definition*/ ;
using is_always_equal = /*see definition*/ ;
template <class T> using rebind_alloc = /*see definition*/ ;
template <class T> using rebind_traits = allocator_traits<rebind_alloc<T>>;
static pointer allocate(Alloc& a, size_type n);
static pointer allocate(Alloc& a, size_type n, const_void_pointer hint);
static void deallocate(Alloc& a, pointer p, size_type n);
template <class T, class... Args>
static void construct(Alloc& a, T* p, Args&&... args);
template <class T>
static void destroy(Alloc& a, T* p);
static size_type max_size(const Alloc& a) noexcept;
static Alloc select_on_container_copy_construction(const Alloc& rhs);
};
}std::allocator
namespace std {
template <class T> class allocator {
public:
using value_type = T;
using propagate_on_container_move_assignment = true_type;
using is_always_equal = true_type;
allocator() noexcept;
allocator(const allocator&) noexcept;
template <class U> allocator(const allocator<U>&) noexcept;
~allocator();
T* allocate(size_t n);
void deallocate(T* p, size_t n);
};
}std::default_delete
namespace std {
template <class T>
struct default_delete {
constexpr default_delete() noexcept = default;
template <class U> default_delete(const default_delete<U>&) noexcept;
void operator()(T*) const;
};
template <class T>
struct default_delete<T[]> {
constexpr default_delete() noexcept = default;
template <class U> default_delete(const default_delete<U[]>&) noexcept;
template <class U> void operator()(U* ptr) const;
};
}std::unique_ptr
namespace std {
template <class T, class D = default_delete<T>>
class unique_ptr {
public:
using pointer = /*see definition*/ ;
using element_type = T;
using deleter_type = D;
// constructors
constexpr unique_ptr() noexcept;
explicit unique_ptr(pointer p) noexcept;
unique_ptr(pointer p, /*see definition*/ d1) noexcept;
unique_ptr(pointer p, /*see definition*/ d2) noexcept;
unique_ptr(unique_ptr&& u) noexcept;
constexpr unique_ptr(nullptr_t) noexcept : unique_ptr() { }
template <class U, class E>
unique_ptr(unique_ptr<U, E>&& u) noexcept;
// destructor
~unique_ptr();
// assignment
unique_ptr& operator=(unique_ptr&& u) noexcept;
template <class U, class E> unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept;
unique_ptr& operator=(nullptr_t) noexcept;
// observers
add_lvalue_reference_t<T> operator*() const;
pointer operator->() const noexcept;
pointer get() const noexcept;
deleter_type& get_deleter() noexcept;
const deleter_type& get_deleter() const noexcept;
explicit operator bool() const noexcept;
// modifiers
pointer release() noexcept;
void reset(pointer p = pointer()) noexcept;
void swap(unique_ptr& u) noexcept;
// disable copy from lvalue
unique_ptr(const unique_ptr&) = delete;
unique_ptr& operator=(const unique_ptr&) = delete;
};
template <class T, class D>
class unique_ptr<T[], D> {
public:
using pointer = /*see definition*/ ;
using element_type = T;
using deleter_type = D;
// constructors
constexpr unique_ptr() noexcept;
template <class U> explicit unique_ptr(U p) noexcept;
template <class U> unique_ptr(U p, /*see definition*/d) noexcept;
template <class U> unique_ptr(U p, /*see definition*/d) noexcept;
unique_ptr(unique_ptr&& u) noexcept;
template <class U, class E>
unique_ptr(unique_ptr<U, E>&& u) noexcept;
constexpr unique_ptr(nullptr_t) noexcept : unique_ptr() { }
// destructor
~unique_ptr();
// assignment
unique_ptr& operator=(unique_ptr&& u) noexcept;
template <class U, class E>
unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept;
unique_ptr& operator=(nullptr_t) noexcept;
// observers
T& operator[](size_t i) const;
pointer get() const noexcept;
deleter_type& get_deleter() noexcept;
const deleter_type& get_deleter() const noexcept;
explicit operator bool() const noexcept;
// modifiers
pointer release() noexcept;
template <class U> void reset(U p) noexcept;
void reset(nullptr_t = nullptr) noexcept;
void swap(unique_ptr& u) noexcept;
// disable copy from lvalue
unique_ptr(const unique_ptr&) = delete;
unique_ptr& operator=(const unique_ptr&) = delete;
};
}std::bad_weak_ptr
namespace std {
class bad_weak_ptr : public exception {
public:
bad_weak_ptr() noexcept;
};
}std::shared_ptr
namespace std {
template<class T>
class shared_ptr {
public:
using element_type = remove_extent_t<T>;
using weak_type = weak_ptr<T>;
// constructors
constexpr shared_ptr() noexcept;
template<class Y> explicit shared_ptr(Y* p);
template<class Y, class D> shared_ptr(Y* p, D d);
template<class Y, class D, class A> shared_ptr(Y* p, D d, A a);
template <class D> shared_ptr(nullptr_t p, D d);
template <class D, class A> shared_ptr(nullptr_t p, D d, A a);
template<class Y> shared_ptr(const shared_ptr<Y>& r, element_type* p) noexcept;
shared_ptr(const shared_ptr& r) noexcept;
template<class Y> shared_ptr(const shared_ptr<Y>& r) noexcept;
shared_ptr(shared_ptr&& r) noexcept;
template<class Y> shared_ptr(shared_ptr<Y>&& r) noexcept;
template<class Y> explicit shared_ptr(const weak_ptr<Y>& r);
template <class Y, class D> shared_ptr(unique_ptr<Y, D>&& r);
constexpr shared_ptr(nullptr_t) noexcept : shared_ptr() { }
// destructor
~shared_ptr();
// assignment
shared_ptr& operator=(const shared_ptr& r) noexcept;
template<class Y> shared_ptr& operator=(const shared_ptr<Y>& r) noexcept;
shared_ptr& operator=(shared_ptr&& r) noexcept;
template<class Y> shared_ptr& operator=(shared_ptr<Y>&& r) noexcept;
template <class Y, class D> shared_ptr& operator=(unique_ptr<Y, D>&& r);
// modifiers
void swap(shared_ptr& r) noexcept;
void reset() noexcept;
template<class Y> void reset(Y* p);
template<class Y, class D> void reset(Y* p, D d);
template<class Y, class D, class A> void reset(Y* p, D d, A a);
// observers
element_type* get() const noexcept;
T& operator*() const noexcept;
T* operator->() const noexcept;
element_type& operator[](ptrdiff_t i) const;
long use_count() const noexcept;
explicit operator bool() const noexcept;
template<class U> bool owner_before(const shared_ptr<U>& b) const;
template<class U> bool owner_before(const weak_ptr<U>& b) const;
};
}std::weak_ptr
namespace std {
template<class T>
class weak_ptr {
public:
using element_type = T;
// constructors
constexpr weak_ptr() noexcept;
template<class Y> weak_ptr(const shared_ptr<Y>& r) noexcept;
weak_ptr(const weak_ptr& r) noexcept;
template<class Y> weak_ptr(const weak_ptr<Y>& r) noexcept;
weak_ptr(weak_ptr&& r) noexcept;
template<class Y> weak_ptr(weak_ptr<Y>&& r) noexcept;
// destructor
~weak_ptr();
// assignment
weak_ptr& operator=(const weak_ptr& r) noexcept;
template<class Y> weak_ptr& operator=(const weak_ptr<Y>& r) noexcept;
template<class Y> weak_ptr& operator=(const shared_ptr<Y>& r) noexcept;
weak_ptr& operator=(weak_ptr&& r) noexcept;
template<class Y> weak_ptr& operator=(weak_ptr<Y>&& r) noexcept;
// modifiers
void swap(weak_ptr& r) noexcept;
void reset() noexcept;
// observers
long use_count() const noexcept;
bool expired() const noexcept;
shared_ptr<T> lock() const noexcept;
template<class U> bool owner_before(const shared_ptr<U>& b) const;
template<class U> bool owner_before(const weak_ptr<U>& b) const;
};
}std::owner_less
namespace std {
template<class T = void> struct owner_less;
template<class T> struct owner_less<shared_ptr<T>> {
bool operator()(const shared_ptr<T>&, const shared_ptr<T>&) const;
bool operator()(const shared_ptr<T>&, const weak_ptr<T>&) const;
bool operator()(const weak_ptr<T>&, const shared_ptr<T>&) const;
};
template<class T> struct owner_less<weak_ptr<T>> {
bool operator()(const weak_ptr<T>&, const weak_ptr<T>&) const;
bool operator()(const shared_ptr<T>&, const weak_ptr<T>&) const;
bool operator()(const weak_ptr<T>&, const shared_ptr<T>&) const;
};
template<> struct owner_less<void> {
template<class T, class U>
bool operator()(const shared_ptr<T>&, const shared_ptr<U>&) const;
template<class T, class U>
bool operator()(const shared_ptr<T>&, const weak_ptr<U>&) const;
template<class T, class U>
bool operator()(const weak_ptr<T>&, const shared_ptr<U>&) const;
template<class T, class U>
bool operator()(const weak_ptr<T>&, const weak_ptr<U>&) const;
using is_transparent = /*unspecified*/ ;
};
}std::enable_shared_from_this
namespace std {
template<class T> class enable_shared_from_this {
protected:
constexpr enable_shared_from_this() noexcept;
enable_shared_from_this(const enable_shared_from_this&) noexcept;
enable_shared_from_this& operator=(const enable_shared_from_this&) noexcept;
~enable_shared_from_this();
public:
shared_ptr<T> shared_from_this();
shared_ptr<T const> shared_from_this() const;
weak_ptr<T> weak_from_this() noexcept;
weak_ptr<T const> weak_from_this() const noexcept;
private:
mutable weak_ptr<T> weak_this; // exposition only
};
}
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/header/memory