Lists the exceptions that a function might directly or indirectly throw.
throw( ) | (deprecated in c++11) | |
throw( typeid, typeid, ...) | (deprecated in C++11)(until C++17) |
1) Non-throwing dynamic exception specification | (until C++17) |
1) Same as noexcept(true) | (since C++17) |
This specification may appear only on lambda-declarator or on a function declarator that is the top-level (until C++17) declarator of a function, variable, or non-static data member, whose type is a function type, a pointer to function type, a reference to function type, a pointer to member function type. It may appear on the declarator of a parameter or on the declarator of a return type.
void f() throw(int); // OK: function declaration void (*fp)() throw (int); // OK: pointer to function declaration void g(void pfa() throw(int)); // OK: pointer to function parameter declaration typedef int (*pf)() throw(int); // Error: typedef declaration
If a function is declared with type T
listed in its exception specification, the function may throw exceptions of that type or a type derived from it.
Incomplete types, pointers or references to incomplete types other than cv void*
, and rvalue reference types are not allowed in the exception specification. Array and function types, if used, are adjusted to corresponding pointer types. parameter packs are allowed (since C++11).
If the function throws an exception of the type not listed in its exception specification, the function std::unexpected
is called. The default function calls std::terminate
, but it may be replaced by a user-provided function (via std::set_unexpected
) which may call std::terminate
or throw an exception. If the exception thrown from std::unexpected
is accepted by the exception specification, stack unwinding continues as usual. If it isn't, but std::bad_exception
is allowed by the exception specification, std::bad_exception
is thrown. Otherwise, std::terminate
is called.
Potential exceptionsEach function f , fp , or mfp uses throw() (deprecated) or noexcept, the set is empty. 2) Otherwise, if the declaration of f , fp , or mfp uses a dynamic exception specification(deprecated), the set consists of the types listed in that specification 3) Otherwise, the set is the set of all types Note: for implicitly-declared special member functions (constructors, assignment operators, and destructors) and for the inheriting constructors, the set of potential exceptions is a combination of the sets of the potential exceptions of everything they would call: constructors/assignment operators/destructors of non-variant non-static data members, direct bases, and, where appropriate, virtual bases (including default argument expressions, as always). Each expression e is a core constant expression, the set is empty 2) Otherwise, the set is the union of the sets of potential exceptions of all immediate subexpressions of e (including default argument expressions), combined with another set that depends on the form of e , as follows: 1) If e is a function call expression, and
e calls a function implicitly (it's an operator expression and the operator is overloaded, it is a new-expression and the allocation function is overloaded, or it is a full expression and the destructor of a temporary is called)), then the set is the set of that function. 3) If e is a throw-expression, the set is the exception that would be initialized by its operand, or the set of all types for the re-throwing throw-expression (with no operand) 4) If e is a dynamic_cast to a reference to a polymorphic type, the set consists of std::bad_cast 5) If e is a typeid applied to a polymorphic glvalue, the set consists of std::bad_typeid 6) If e is a new-expression with a non-constant size, the set consists of std::bad_array_new_length void f() throw(int); // f()'s set is "int" void g(); // g()'s set is the set of all types struct A { A(); }; // "new A"'s set is the set of all types struct B { B() noexcept; }; // "B()"'s set is empty struct D() { D() throw (double); }; // new D's set is the set of all types All implicitly-declared member functions (and inheriting constructors) have exception specifications, selected as follows:
struct A { A(int = (A(5), 0)) noexcept; A(const A&) throw(); A(A&&) throw(); ~A() throw(X); }; struct B { B() throw(); B(const B&) = default; // exception specification is "noexcept(true)" B(B&&, int = (throw Y(), 0)) throw(Y) noexcept; ~B() throw(Y); }; int n = 7; struct D : public A, public B { int * p = new (std::nothrow) int[n]; // D has the following implicitly-declared members: // D::D() throw(X, std::bad_array_new_length); // D::D(const D&) noexcept(true); // D::D(D&&) throw(Y); // D::~D() throw(X, Y); }; | (since C++17) |
#include <iostream> #include <exception> #include <cstdlib> class X {}; class Y {}; class Z : public X {}; class W {}; void f() throw(X, Y) { int n = 0; if (n) throw X(); // OK if (n) throw Z(); // also OK throw W(); // will call std::unexpected() } int main() { std::set_unexpected([]{ std::cout << "That was unexpected" << std::endl; // flush needed std::abort(); }); f(); }
Output:
That was unexpected
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/language/except_spec