In order to provide quality support for touch-based user interfaces, touch events offer the ability to interpret finger (or stylus) activity on touch screens or trackpads.
The touch events interfaces are relatively low-level APIs that can be used to support application specific multi-touch interactions such as a two-finger gesture. A multi-touch interaction starts when a finger (or stylus) first touches the contact surface. Other fingers may subsequently touch the surface and optionally move across the touch surface. The interaction ends when the fingers are removed from the surface. During this interaction, an application receives touch events during the start, move and end phases.
Touch events are similar to mouse events except they support simultaneous touches and at different locations on the touch surface. The TouchEvent
interface encapsulates all of the touch points that are currently active. The Touch
interface, which represents a single touch point, includes information such as the position of the touch point relative to the browser viewport.
TouchEvent
Touch
TouchList
This example tracks multiple touch points at a time, allowing the user to draw in a <canvas>
with more than one finger at a time. It will only work on a browser that supports touch events.
<canvas id="canvas" width="600" height="600" style="border:solid black 1px;"> Your browser does not support canvas element. </canvas> <br> <button onclick="startup()">Initialize</button> <br> Log: <pre id="log" style="border: 1px solid #ccc;"></pre>
When the page loads, the startup()
function shown below should be called by our <body>
element's onload
attribute (but in the example we use a button to trigger it, due to limitations of the MDN live example system).
function startup() { var el = document.getElementsByTagName("canvas")[0]; el.addEventListener("touchstart", handleStart, false); el.addEventListener("touchend", handleEnd, false); el.addEventListener("touchcancel", handleCancel, false); el.addEventListener("touchmove", handleMove, false); log("initialized."); }
This simply sets up all the event listeners for our <canvas>
element so we can handle the touch events as they occur.
We'll keep track of the touches in-progress.
var ongoingTouches = [];
When a touchstart
event occurs, indicating that a new touch on the surface has occurred, the handleStart()
function below is called.
function handleStart(evt) { evt.preventDefault(); log("touchstart."); var el = document.getElementsByTagName("canvas")[0]; var ctx = el.getContext("2d"); var touches = evt.changedTouches; for (var i = 0; i < touches.length; i++) { log("touchstart:" + i + "..."); ongoingTouches.push(copyTouch(touches[i])); var color = colorForTouch(touches[i]); ctx.beginPath(); ctx.arc(touches[i].pageX, touches[i].pageY, 4, 0, 2 * Math.PI, false); // a circle at the start ctx.fillStyle = color; ctx.fill(); log("touchstart:" + i + "."); } }
This calls event.preventDefault()
to keep the browser from continuing to process the touch event (this also prevents a mouse event from also being delivered). Then we get the context and pull the list of changed touch points out of the event's TouchEvent.changedTouches
property.
After that, we iterate over all the Touch
objects in the list, pushing them onto an array of active touch points and drawing the start point for the draw as a small circle; we're using a 4-pixel wide line, so a 4 pixel radius circle will show up neatly.
Each time one or more fingers moves, a touchmove
event is delivered, resulting in our handleMove()
function being called. Its responsibility in this example is to update the cached touch information and to draw a line from the previous position to the current position of each touch.
function handleMove(evt) { evt.preventDefault(); var el = document.getElementsByTagName("canvas")[0]; var ctx = el.getContext("2d"); var touches = evt.changedTouches; for (var i = 0; i < touches.length; i++) { var color = colorForTouch(touches[i]); var idx = ongoingTouchIndexById(touches[i].identifier); if (idx >= 0) { log("continuing touch "+idx); ctx.beginPath(); log("ctx.moveTo(" + ongoingTouches[idx].pageX + ", " + ongoingTouches[idx].pageY + ");"); ctx.moveTo(ongoingTouches[idx].pageX, ongoingTouches[idx].pageY); log("ctx.lineTo(" + touches[i].pageX + ", " + touches[i].pageY + ");"); ctx.lineTo(touches[i].pageX, touches[i].pageY); ctx.lineWidth = 4; ctx.strokeStyle = color; ctx.stroke(); ongoingTouches.splice(idx, 1, copyTouch(touches[i])); // swap in the new touch record log("."); } else { log("can't figure out which touch to continue"); } } }
This iterates over the changed touches as well, but it looks in our cached touch information array for the previous information about each touch in order to determine the starting point for each touch's new line segment to be drawn. This is done by looking at each touch's Touch.identifier
property. This property is a unique integer for each touch, and remains consistent for each event during the duration of each finger's contact with the surface.
This lets us get the coordinates of the previous position of each touch and use the appropriate context methods to draw a line segment joining the two positions together.
After drawing the line, we call Array.splice()
to replace the previous information about the touch point with the current information in the ongoingTouches
array.
When the user lifts a finger off the surface, a touchend
event is sent. We handle both of these the same way: by calling the handleEnd()
function below. Its job is to draw the last line segment for each touch that ended and remove the touch point from the ongoing touch list.
function handleEnd(evt) { evt.preventDefault(); log("touchend"); var el = document.getElementsByTagName("canvas")[0]; var ctx = el.getContext("2d"); var touches = evt.changedTouches; for (var i = 0; i < touches.length; i++) { var color = colorForTouch(touches[i]); var idx = ongoingTouchIndexById(touches[i].identifier); if (idx >= 0) { ctx.lineWidth = 4; ctx.fillStyle = color; ctx.beginPath(); ctx.moveTo(ongoingTouches[idx].pageX, ongoingTouches[idx].pageY); ctx.lineTo(touches[i].pageX, touches[i].pageY); ctx.fillRect(touches[i].pageX - 4, touches[i].pageY - 4, 8, 8); // and a square at the end ongoingTouches.splice(idx, 1); // remove it; we're done } else { log("can't figure out which touch to end"); } } }
This is very similar to the previous function; the only real differences are that we draw a small square to mark the end and that when we call Array.splice()
, we simply remove the old entry from the ongoing touch list, without adding in the updated information. The result is that we stop tracking that touch point.
If the user's finger wanders into browser UI, or the touch otherwise needs to be canceled, the touchcancel
event is sent, and we call the handleCancel()
function below.
function handleCancel(evt) { evt.preventDefault(); log("touchcancel."); var touches = evt.changedTouches; for (var i = 0; i < touches.length; i++) { var idx = ongoingTouchIndexById(touches[i].identifier); ongoingTouches.splice(idx, 1); // remove it; we're done } }
Since the idea is to immediately abort the touch, we simply remove it from the ongoing touch list without drawing a final line segment.
This example uses two convenience functions that should be looked at briefly to help make the rest of the code more clear.
In order to make each touch's drawing look different, the colorForTouch()
function is used to pick a color based on the touch's unique identifier. This identifier is an opaque number, but we can at least rely on it differing between the currently-active touches.
function colorForTouch(touch) { var r = touch.identifier % 16; var g = Math.floor(touch.identifier / 3) % 16; var b = Math.floor(touch.identifier / 7) % 16; r = r.toString(16); // make it a hex digit g = g.toString(16); // make it a hex digit b = b.toString(16); // make it a hex digit var color = "#" + r + g + b; log("color for touch with identifier " + touch.identifier + " = " + color); return color; }
The result from this function is a string that can be used when calling <canvas>
functions to set drawing colors. For example, for a Touch.identifier
value of 10, the resulting string is "#aaa".
Some browsers (mobile Safari, for one) re-use touch objects between events, so it's best to copy the bits you care about, rather than referencing the entire object.
function copyTouch(touch) { return { identifier: touch.identifier, pageX: touch.pageX, pageY: touch.pageY }; }
The ongoingTouchIndexById()
function below scans through the ongoingTouches
array to find the touch matching the given identifier, then returns that touch's index into the array.
function ongoingTouchIndexById(idToFind) { for (var i = 0; i < ongoingTouches.length; i++) { var id = ongoingTouches[i].identifier; if (id == idToFind) { return i; } } return -1; // not found }
function log(msg) { var p = document.getElementById('log'); p.innerHTML = msg + "\n" + p.innerHTML; }
If your browser supports it, you can see it live.
This section provides additional tips on how to handle touch events in your web application.
Since calling preventDefault()
on a touchstart
or the first touchmove
event of a series prevents the corresponding mouse events from firing, it's common to call preventDefault()
on touchmove
rather than touchstart
. That way, mouse events can still fire and things like links will continue to work. Alternatively, some frameworks have taken to refiring touch events as mouse events for this same purpose. (This example is oversimplified and may result in strange behavior. It is only intended as a guide.)
function onTouch(evt) { evt.preventDefault(); if (evt.touches.length > 1 || (evt.type == "touchend" && evt.touches.length > 0)) return; var newEvt = document.createEvent("MouseEvents"); var type = null; var touch = null; switch (evt.type) { case "touchstart": type = "mousedown"; touch = evt.changedTouches[0]; break; case "touchmove": type = "mousemove"; touch = evt.changedTouches[0]; break; case "touchend": type = "mouseup"; touch = evt.changedTouches[0]; break; } newEvt.initMouseEvent(type, true, true, evt.originalTarget.ownerDocument.defaultView, 0, touch.screenX, touch.screenY, touch.clientX, touch.clientY, evt.ctrlKey, evt.altKey, evt.shiftKey, evt.metaKey, 0, null); evt.originalTarget.dispatchEvent(newEvt); }
One technique for preventing things like pinchZoom
on a page is to call preventDefault()
on the second touch in a series. This behavior is not well defined in the touch events spec, and results in different behavior for different browsers (i.e., iOS will prevent zooming but still allow panning with both fingers; Android will allow zooming but not panning; Opera and Firefox currently prevent all panning and zooming.) Currently, it's not recommended to depend on any particular behavior in this case, but rather to depend on meta viewport to prevent zooming.
Specification | Status | Comment |
---|---|---|
Touch Events – Level 2 The definition of 'Touch' in that specification. | Editor's Draft | Added radiusX , radiusY , rotationAngle , force properties |
Touch Events The definition of 'Touch' in that specification. | Recommendation | Initial definition. |
Note that unfortunately touch events may not fire at all on laptops with touch functionality (test page).
Feature | Chrome | Edge | Firefox (Gecko) | Internet Explorer | Opera | Safari |
---|---|---|---|---|---|---|
Basic support | 22.0 | (Yes) |
18.0 (18.0)[1] 52.0 (52.0)[2] | No support | No support | No support |
Feature | Android | Android Webview | Chrome for Android | Edge | Firefox Mobile (Gecko) | Firefox OS | IE Mobile | Opera Mobile | Safari Mobile |
---|---|---|---|---|---|---|---|---|---|
Basic support | (Yes) | (Yes) | (Yes) | (Yes) | 6.0 (6.0) | (Yes) | 11 | (Yes) | (Yes) |
[1] The dom.w3c_touch_events.enabled
tri-state preference can be used to disable (0), enable (1), and auto-detect (2) support for standard touch events; by default, they're on auto-detect (2).
As of Gecko 24.0 (Firefox 24.0 / Thunderbird 24.0 / SeaMonkey 2.21), the touch events support introduced with Gecko 18.0 (Firefox 18.0 / Thunderbird 18.0 / SeaMonkey 2.15) has been disabled on the desktop version of Firefox (bug 888304), as some popular sites including Google and Twitter were not working properly. Once the bug is fixed, the API will be enabled again. To enable it anyway, open about:config
and set the dom.w3c_touch_events.enabled
preference to 2
. The mobile versions including Firefox for Android and Firefox OS are not affected by this change.
[2] As of Gecko 52.0, touch events support has been fixed and reenabled in Windows desktop platforms.
Note: Prior to Gecko 6.0 (Firefox 6.0 / Thunderbird 6.0 / SeaMonkey 2.3), Gecko offered a proprietary touch event API. That API is now deprecated; you should switch to this one.
In Firefox, touch events are disabled when e10s (electrolysis; multiprocess Firefox) is disabled. e10s is on by default in Firefox, but can end up becoming disabled in certain situations, for example when certain accessibility tools or Firefox add-ons are installed that require e10s to be disabled to work. This means that even on a touchscreen-enabled desktop/laptop, touch events won't be enabled.
You can test whether e10s is disabled by going to about:support
and looking at the "Multiprocess Windows" entry in the "Application Basics" section. 1/1 means it is enabled, 0/1 means disabled.
If you want to force e10s to be on — to explicitly reenable touch events support — you need to go to about:config
and create a new boolean preference browser.tabs.remote.force-enable
. Set it to true
, restart the browser, and e10s will be enabled regardless of any other settings.
© 2005–2018 Mozilla Developer Network and individual contributors.
Licensed under the Creative Commons Attribution-ShareAlike License v2.5 or later.
https://developer.mozilla.org/en-US/docs/Web/API/Touch_events