Functions for working with integers.
Returns the ordered digits for the given integer
Performs a floored integer division
Returns the greatest common divisor of the two given integers
Determines if an integer is even
Determines if integer is odd
Computes the modulo remainder of an integer division
Parses a text representation of an integer
Returns a charlist which corresponds to the text representation of the given integer
Returns a charlist which corresponds to the text representation of integer in the given base
Returns a binary which corresponds to the text representation of integer
Returns a binary which corresponds to the text representation of integer in the given base
Returns the integer represented by the ordered digits
digits(integer(), pos_integer()) :: [integer(), ...]
Returns the ordered digits for the given integer.
An optional base value may be provided representing the radix for the returned digits. This one must be an integer >= 2.
iex> Integer.digits(123)
[1, 2, 3]
iex> Integer.digits(170, 2)
[1, 0, 1, 0, 1, 0, 1, 0]
iex> Integer.digits(-170, 2)
[-1, 0, -1, 0, -1, 0, -1, 0] floor_div(integer(), neg_integer() | pos_integer()) :: integer()
Performs a floored integer division.
Raises an ArithmeticError exception if one of the arguments is not an integer, or when the divisor is 0.
Integer.floor_div/2 performs floored integer division. This means that the result is always rounded towards negative infinity.
If you want to perform truncated integer division (rounding towards zero), use Kernel.div/2 instead.
iex> Integer.floor_div(5, 2)
2
iex> Integer.floor_div(6, -4)
-2
iex> Integer.floor_div(-99, 2)
-50 gcd(integer(), integer()) :: pos_integer()
gcd(0, 0) :: 0
Returns the greatest common divisor of the two given integers.
The greatest common divisor (GCD) of integer1 and integer2 is the largest positive integer that divides both integer1 and integer2 without leaving a remainder.
By convention, gcd(0, 0) returns 0.
iex> Integer.gcd(2, 3)
1
iex> Integer.gcd(8, 12)
4
iex> Integer.gcd(8, -12)
4
iex> Integer.gcd(10, 0)
10
iex> Integer.gcd(7, 7)
7
iex> Integer.gcd(0, 0)
0 Determines if an integer is even.
Returns true if the given integer is an even number, otherwise it returns false.
Allowed in guard clauses.
iex> Integer.is_even(10)
true
iex> Integer.is_even(5)
false
iex> Integer.is_even(-10)
true
iex> Integer.is_even(0)
true Determines if integer is odd.
Returns true if the given integer is an odd number, otherwise it returns false.
Allowed in guard clauses.
iex> Integer.is_odd(5)
true
iex> Integer.is_odd(6)
false
iex> Integer.is_odd(-5)
true
iex> Integer.is_odd(0)
false mod(integer(), neg_integer() | pos_integer()) :: integer()
Computes the modulo remainder of an integer division.
Integer.mod/2 uses floored division, which means that the result will always have the sign of the divisor.
Raises an ArithmeticError exception if one of the arguments is not an integer, or when the divisor is 0.
iex> Integer.mod(5, 2)
1
iex> Integer.mod(6, -4)
-2 parse(binary(), 2..36) :: {integer(), binary()} | :error Parses a text representation of an integer.
An optional base to the corresponding integer can be provided. If base is not given, 10 will be used.
If successful, returns a tuple in the form of {integer, remainder_of_binary}. Otherwise :error.
Raises an error if base is less than 2 or more than 36.
If you want to convert a string-formatted integer directly to a integer, String.to_integer/1 or String.to_integer/2 can be used instead.
iex> Integer.parse("34")
{34, ""}
iex> Integer.parse("34.5")
{34, ".5"}
iex> Integer.parse("three")
:error
iex> Integer.parse("34", 10)
{34, ""}
iex> Integer.parse("f4", 16)
{244, ""}
iex> Integer.parse("Awww++", 36)
{509216, "++"}
iex> Integer.parse("fab", 10)
:error
iex> Integer.parse("a2", 38)
** (ArgumentError) invalid base 38 to_charlist(integer()) :: charlist()
Returns a charlist which corresponds to the text representation of the given integer.
Inlined by the compiler.
iex> Integer.to_charlist(123)
'123'
iex> Integer.to_charlist(+456)
'456'
iex> Integer.to_charlist(-789)
'-789'
iex> Integer.to_charlist(0123)
'123' to_charlist(integer(), 2..36) :: charlist()
Returns a charlist which corresponds to the text representation of integer in the given base.
base can be an integer between 2 and 36.
Inlined by the compiler.
iex> Integer.to_charlist(100, 16)
'64'
iex> Integer.to_charlist(-100, 16)
'-64'
iex> Integer.to_charlist(882681651, 36)
'ELIXIR' to_string(integer()) :: String.t()
Returns a binary which corresponds to the text representation of integer.
Inlined by the compiler.
iex> Integer.to_string(123)
"123"
iex> Integer.to_string(+456)
"456"
iex> Integer.to_string(-789)
"-789"
iex> Integer.to_string(0123)
"123" to_string(integer(), 2..36) :: String.t()
Returns a binary which corresponds to the text representation of integer in the given base.
base can be an integer between 2 and 36.
Inlined by the compiler.
iex> Integer.to_string(100, 16)
"64"
iex> Integer.to_string(-100, 16)
"-64"
iex> Integer.to_string(882681651, 36)
"ELIXIR" undigits([integer()], pos_integer()) :: integer()
Returns the integer represented by the ordered digits.
An optional base value may be provided representing the radix for the digits. Base has to be an integer greater or equal than 2.
iex> Integer.undigits([1, 2, 3])
123
iex> Integer.undigits([1, 4], 16)
20
iex> Integer.undigits([])
0
© 2012 Plataformatec
Licensed under the Apache License, Version 2.0.
https://hexdocs.pm/elixir/1.6.0/Integer.html