Copyright | (c) The University of Glasgow 2001 |
---|---|
License | BSD-style (see the file libraries/base/LICENSE) |
Maintainer | [email protected] |
Stability | experimental |
Portability | portable |
Safe Haskell | Trustworthy |
Language | Haskell2010 |
Mutable references in the IO monad.
A mutable variable in the IO
monad
newIORef :: a -> IO (IORef a) Source
Build a new IORef
readIORef :: IORef a -> IO a Source
Read the value of an IORef
writeIORef :: IORef a -> a -> IO () Source
Write a new value into an IORef
modifyIORef :: IORef a -> (a -> a) -> IO () Source
Mutate the contents of an IORef
.
Be warned that modifyIORef
does not apply the function strictly. This means if the program calls modifyIORef
many times, but seldomly uses the value, thunks will pile up in memory resulting in a space leak. This is a common mistake made when using an IORef as a counter. For example, the following will likely produce a stack overflow:
ref <- newIORef 0 replicateM_ 1000000 $ modifyIORef ref (+1) readIORef ref >>= print
To avoid this problem, use modifyIORef'
instead.
modifyIORef' :: IORef a -> (a -> a) -> IO () Source
Strict version of modifyIORef
Since: 4.6.0.0
atomicModifyIORef :: IORef a -> (a -> (a, b)) -> IO b Source
Atomically modifies the contents of an IORef
.
This function is useful for using IORef
in a safe way in a multithreaded program. If you only have one IORef
, then using atomicModifyIORef
to access and modify it will prevent race conditions.
Extending the atomicity to multiple IORef
s is problematic, so it is recommended that if you need to do anything more complicated then using MVar
instead is a good idea.
atomicModifyIORef
does not apply the function strictly. This is important to know even if all you are doing is replacing the value. For example, this will leak memory:
ref <- newIORef '1' forever $ atomicModifyIORef ref (\_ -> ('2', ()))
Use atomicModifyIORef'
or atomicWriteIORef
to avoid this problem.
atomicModifyIORef' :: IORef a -> (a -> (a, b)) -> IO b Source
Strict version of atomicModifyIORef
. This forces both the value stored in the IORef
as well as the value returned.
Since: 4.6.0.0
atomicWriteIORef :: IORef a -> a -> IO () Source
Variant of writeIORef
with the "barrier to reordering" property that atomicModifyIORef
has.
Since: 4.6.0.0
mkWeakIORef :: IORef a -> IO () -> IO (Weak (IORef a)) Source
Make a Weak
pointer to an IORef
, using the second argument as a finalizer to run when IORef
is garbage-collected
In a concurrent program, IORef
operations may appear out-of-order to another thread, depending on the memory model of the underlying processor architecture. For example, on x86, loads can move ahead of stores, so in the following example:
maybePrint :: IORef Bool -> IORef Bool -> IO () maybePrint myRef yourRef = do writeIORef myRef True yourVal <- readIORef yourRef unless yourVal $ putStrLn "critical section" main :: IO () main = do r1 <- newIORef False r2 <- newIORef False forkIO $ maybePrint r1 r2 forkIO $ maybePrint r2 r1 threadDelay 1000000
it is possible that the string "critical section"
is printed twice, even though there is no interleaving of the operations of the two threads that allows that outcome. The memory model of x86 allows readIORef
to happen before the earlier writeIORef
.
The implementation is required to ensure that reordering of memory operations cannot cause type-correct code to go wrong. In particular, when inspecting the value read from an IORef
, the memory writes that created that value must have occurred from the point of view of the current thread.
atomicModifyIORef
acts as a barrier to reordering. Multiple atomicModifyIORef
operations occur in strict program order. An atomicModifyIORef
is never observed to take place ahead of any earlier (in program order) IORef
operations, or after any later IORef
operations.
© The University of Glasgow and others
Licensed under a BSD-style license (see top of the page).
https://downloads.haskell.org/~ghc/8.2.1/docs/html/libraries/base-4.10.0.0/Data-IORef.html