The apply()
method calls a function with a given this
value, and arguments
provided as an array (or an array-like object).
Note: While the syntax of this function is almost identical to that of call()
, the fundamental difference is that call()
accepts an argument list, while apply()
accepts a single array of arguments.
func.apply(thisArg, [argsArray])
thisArg
this
provided for the call to func
. Note that this
may not be the actual value seen by the method: if the method is a function in non-strict mode code, null
and undefined
will be replaced with the global object, and primitive values will be boxed.argsArray
func
should be called, or null
or undefined
if no arguments should be provided to the function. Starting with ECMAScript 5 these arguments can be a generic array-like object instead of an array. See below for browser compatibility information.The result of calling the function with the specified this
value and arguments.
You can assign a different this
object when calling an existing function. this
refers to the current object, the calling object. With apply
, you can write a method once and then inherit it in another object, without having to rewrite the method for the new object.
apply
is very similar to call()
, except for the type of arguments it supports. You use an arguments array instead of a list of arguments (parameters). With apply
, you can also use an array literal, for example, func.apply(this, ['eat', 'bananas'])
, or an Array
object, for example, func.apply(this, new Array('eat', 'bananas'))
.
You can also use arguments
for the argsArray
parameter. arguments
is a local variable of a function. It can be used for all unspecified arguments of the called object. Thus, you do not have to know the arguments of the called object when you use the apply
method. You can use arguments
to pass all the arguments to the called object. The called object is then responsible for handling the arguments.
Since ECMAScript 5th Edition you can also use any kind of object which is array-like, so in practice this means it's going to have a property length
and integer properties in the range (0...length-1)
. As an example you can now use a NodeList
or a custom object like { 'length': 2, '0': 'eat', '1': 'bananas' }
.
Most browsers, including Chrome 14 and Internet Explorer 9, still do not accept array-like objects and will throw an exception.
apply
to chain constructorsYou can use apply
to chain constructors for an object, similar to Java. In the following example we will create a global Function
method called construct
, which will enable you to use an array-like object with a constructor instead of an arguments list.
Function.prototype.construct = function(aArgs) { var oNew = Object.create(this.prototype); this.apply(oNew, aArgs); return oNew; };
Note: The Object.create()
method used above is relatively new. For alternative methods, please consider one of the following approaches:
Using Object.__proto__
:
Function.prototype.construct = function (aArgs) { var oNew = {}; oNew.__proto__ = this.prototype; this.apply(oNew, aArgs); return oNew; };
Using closures:
Function.prototype.construct = function(aArgs) { var fConstructor = this, fNewConstr = function() { fConstructor.apply(this, aArgs); }; fNewConstr.prototype = fConstructor.prototype; return new fNewConstr(); };
Using the Function
constructor:
Function.prototype.construct = function (aArgs) { var fNewConstr = new Function(""); fNewConstr.prototype = this.prototype; var oNew = new fNewConstr(); this.apply(oNew, aArgs); return oNew; };
Example usage:
function MyConstructor() { for (var nProp = 0; nProp < arguments.length; nProp++) { this['property' + nProp] = arguments[nProp]; } } var myArray = [4, 'Hello world!', false]; var myInstance = MyConstructor.construct(myArray); console.log(myInstance.property1); // logs 'Hello world!' console.log(myInstance instanceof MyConstructor); // logs 'true' console.log(myInstance.constructor); // logs 'MyConstructor'
Note: This non-native Function.construct
method will not work with some native constructors; like Date
, for example. In these cases you have to use the Function.prototype.bind
method. For example, imagine having an array like the following, to be used with Date
constructor: [2012, 11, 4]
; in this case you have to write something like: new (Function.prototype.bind.apply(Date, [null].concat([2012, 11, 4])))()
. This is not the best way to do things, and probably not to be used in any production environment.
apply
and built-in functionsClever usage of apply
allows you to use built-ins functions for some tasks, that otherwise probably would have been written by looping over the array values. As an example here we are going to use Math.max
/Math.min
, to find out the maximum/minimum value in an array.
// min/max number in an array var numbers = [5, 6, 2, 3, 7]; // using Math.min/Math.max apply var max = Math.max.apply(null, numbers); // This about equal to Math.max(numbers[0], ...) // or Math.max(5, 6, ...) var min = Math.min.apply(null, numbers); // vs. simple loop based algorithm max = -Infinity, min = +Infinity; for (var i = 0; i < numbers.length; i++) { if (numbers[i] > max) { max = numbers[i]; } if (numbers[i] < min) { min = numbers[i]; } }
But beware: in using apply
this way, you run the risk of exceeding the JavaScript engine's argument length limit. The consequences of applying a function with too many arguments (think more than tens of thousands of arguments) vary across engines (JavaScriptCore has hard-coded argument limit of 65536), because the limit (indeed even the nature of any excessively-large-stack behavior) is unspecified. Some engines will throw an exception. More perniciously, others will arbitrarily limit the number of arguments actually passed to the applied function. To illustrate this latter case: if such an engine had a limit of four arguments (actual limits are of course significantly higher), it would be as if the arguments 5, 6, 2, 3
had been passed to apply
in the examples above, rather than the full array.
If your value array might grow into the tens of thousands, use a hybrid strategy: apply your function to chunks of the array at a time:
function minOfArray(arr) { var min = Infinity; var QUANTUM = 32768; for (var i = 0, len = arr.length; i < len; i += QUANTUM) { var submin = Math.min.apply(null, arr.slice(i, Math.min(i+QUANTUM, len))); min = Math.min(submin, min); } return min; } var min = minOfArray([5, 6, 2, 3, 7]);
Specification | Status | Comment |
---|---|---|
ECMAScript 3rd Edition (ECMA-262) | Standard | Initial definition. Implemented in JavaScript 1.3. |
ECMAScript 5.1 (ECMA-262) The definition of 'Function.prototype.apply' in that specification. | Standard | |
ECMAScript 2015 (6th Edition, ECMA-262) The definition of 'Function.prototype.apply' in that specification. | Standard | |
ECMAScript Latest Draft (ECMA-262) The definition of 'Function.prototype.apply' in that specification. | Draft |
Feature | Chrome | Edge | Firefox | Internet Explorer | Opera | Safari |
---|---|---|---|---|---|---|
Basic support | Yes | Yes | Yes | Yes | Yes | Yes |
ES 5.1: generic array-like object as arguments
|
Yes | ? | 4 | ? | ? | ? |
Feature | Android webview | Chrome for Android | Edge mobile | Firefox for Android | Opera Android | iOS Safari | Samsung Internet |
---|---|---|---|---|---|---|---|
Basic support | Yes | Yes | Yes | Yes | Yes | Yes | ? |
ES 5.1: generic array-like object as arguments
|
? | Yes | ? | 4 | ? | ? | ? |
arguments
objectFunction.prototype.bind()
Function.prototype.call()
Reflect.apply()
© 2005–2018 Mozilla Developer Network and individual contributors.
Licensed under the Creative Commons Attribution-ShareAlike License v2.5 or later.
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply