This module contains the interface to the compiler's abstract syntax tree (AST). Macros operate on this tree.
This section describes how the AST is modelled with Nim's type system. The AST consists of nodes (NimNode
) with a variable number of children. Each node has a field named kind
which describes what the node contains:
type NimNodeKind = enum ## kind of a node; only explanatory nnkNone, ## invalid node kind nnkEmpty, ## empty node nnkIdent, ## node contains an identifier nnkIntLit, ## node contains an int literal (example: 10) nnkStrLit, ## node contains a string literal (example: "abc") nnkNilLit, ## node contains a nil literal (example: nil) nnkCaseStmt, ## node represents a case statement ... ## many more NimNode = ref NimNodeObj NimNodeObj = object case kind: NimNodeKind ## the node's kind of nnkNone, nnkEmpty, nnkNilLit: discard ## node contains no additional fields of nnkCharLit..nnkUInt64Lit: intVal: BiggestInt ## the int literal of nnkFloatLit..nnkFloat64Lit: floatVal: BiggestFloat ## the float literal of nnkStrLit..nnkTripleStrLit: strVal: string ## the string literal of nnkIdent: ident: NimIdent ## the identifier of nnkSym: symbol: NimSym ## the symbol (after symbol lookup phase) else: sons: seq[NimNode] ## the node's sons (or children)
For the NimNode
type, the []
operator has been overloaded: n[i]
is n
's i
-th child.
To specify the AST for the different Nim constructs, the notation nodekind(son1, son2, ...)
or nodekind(value)
or nodekind(field=value)
is used.
Some child may be missing. A missing child is a node of kind nnkEmpty
; a child can never be nil.
A leaf of the AST often corresponds to a terminal symbol in the concrete syntax. Note that the default float
in Nim maps to float64
such that the default AST for a float is nnkFloat64Lit
as below.
Nim expression | Corresponding AST |
---|---|
42 |
nnkIntLit(intVal = 42) |
42'i8 |
nnkInt8Lit(intVal = 42) |
42'i16 |
nnkInt16Lit(intVal = 42) |
42'i32 |
nnkInt32Lit(intVal = 42) |
42'i64 |
nnkInt64Lit(intVal = 42) |
42'u8 |
nnkUInt8Lit(intVal = 42) |
42'u16 |
nnkUInt16Lit(intVal = 42) |
42'u32 |
nnkUInt32Lit(intVal = 42) |
42'u64 |
nnkUInt64Lit(intVal = 42) |
42.0 |
nnkFloat64Lit(floatVal = 42.0) |
42.0'f32 |
nnkFloat32Lit(floatVal = 42.0) |
42.0'f64 |
nnkFloat64Lit(floatVal = 42.0) |
"abc" |
nnkStrLit(strVal = "abc") |
r"abc" |
nnkRStrLit(strVal = "abc") |
"""abc""" |
nnkTripleStrLit(strVal = "abc") |
' ' |
nnkCharLit(intVal = 32) |
nil |
nnkNilLit() |
myIdentifier |
nnkIdent(ident = !"myIdentifier") |
myIdentifier |
after lookup pass: nnkSym(symbol = ...)
|
Identifiers are nnkIdent
nodes. After the name lookup pass these nodes get transferred into nnkSym
nodes.
Concrete syntax:
echo "abc", "xyz"
AST:
nnkCommand( nnkIdent(!"echo"), nnkStrLit("abc"), nnkStrLit("xyz") )
()
Concrete syntax:
echo("abc", "xyz")
AST:
nnkCall( nnkIdent(!"echo"), nnkStrLit("abc"), nnkStrLit("xyz") )
Concrete syntax:
"abc" & "xyz"
AST:
nnkInfix( nnkIdent(!"&"), nnkStrLit("abc"), nnkStrLit("xyz") )
Note that with multiple infix operators, the command is parsed by operator precedence.
Concrete syntax:
5 + 3 * 4
AST:
nnkInfix( nnkIdent(!"+"), nnkIntLit(5), nnkInfix( nnkIdent(!"*"), nnkIntLit(3), nnkIntLit(4) ) )
As a side note, if you choose to use infix operators in a prefix form, the AST behaves as a [parenthetical function call](./macros.html#calls-expressions-call-with) with nnkAccQuoted
, as follows:
Concrete syntax:
`+`(3, 4)
AST:
nnkCall( nnkAccQuoted( nnkIdent(!"+") ), nnkIntLit(3), nnkIntLit(4) )
Concrete syntax:
? "xyz"
AST:
nnkPrefix( nnkIdent(!"?"), nnkStrLit("abc") )
Note: There are no postfix operators in Nim. However, the nnkPostfix
node is used for the asterisk export marker *
:
Concrete syntax:
identifier*
AST:
nnkPostfix( nnkIdent(!"*"), nnkIdent(!"identifier") )
Concrete syntax:
writeLine(file=stdout, "hallo")
AST:
nnkCall( nnkIdent(!"writeLine"), nnkExprEqExpr( nnkIdent(!"file"), nnkIdent(!"stdout") ), nnkStrLit("hallo") )
This is used, for example, in the bindSym
examples [here](http://nim-lang.org/docs/manual.html#macros-bindsym) and with re"some regexp"
in the regular expression module.
Concrete syntax:
echo"abc"
AST:
nnkCallStrLit( nnkIdent(!"echo"), nnkRStrLit("hello") )
[]
Concrete syntax:
x[]
AST:
nnkDerefExpr(nnkIdent(!"x"))
Concrete syntax:
addr(x)
AST:
nnkAddr(nnkIdent(!"x"))
Concrete syntax:
cast[T](x)
AST:
nnkCast(nnkIdent(!"T"), nnkIdent(!"x"))
.
Concrete syntax:
x.y
AST:
nnkDotExpr(nnkIdent(!"x"), nnkIdent(!"y"))
If you use Nim's flexible calling syntax (as in x.len()
), the result is the same as above but wrapped in an nnkCall
.
[]
Concrete syntax:
x[y]
AST:
nnkBracketExpr(nnkIdent(!"x"), nnkIdent(!"y"))
Parentheses for affecting operator precedence or tuple construction are built with the nnkPar
node.
Concrete syntax:
(1, 2, (3))
AST:
nnkPar(nnkIntLit(1), nnkIntLit(2), nnkPar(nnkIntLit(3)))
Curly braces are used as the set constructor.
Concrete syntax:
{1, 2, 3}
AST:
nnkCurly(nnkIntLit(1), nnkIntLit(2), nnkIntLit(3))
When used as a table constructor, the syntax is different.
Concrete syntax:
{a: 3, b: 5}
AST:
nnkTableConstr( nnkExprColonExpr(nnkIdent(!"a"), nnkIntLit(3)), nnkExprColonExpr(nnkIdent(!"b"), nnkIntLit(5)) )
Brackets are used as the array constructor.
Concrete syntax:
[1, 2, 3]
AST:
nnkBracket(nnkIntLit(1), nnkIntLit(2), nnkIntLit(3))
Ranges occur in set constructors, case statement branches, or array slices. Internally, the node kind nnkRange
is used, but when constructing the AST, construction with ..
as an infix operator should be used instead.
Concrete syntax:
1..3
AST:
nnkInfix( nnkIdent(!".."), nnkIntLit(1), nnkIntLit(3) )
Example code:
macro genRepeatEcho(): stmt = result = newNimNode(nnkStmtList) var forStmt = newNimNode(nnkForStmt) # generate a for statement forStmt.add(ident("i")) # use the variable `i` for iteration var rangeDef = newNimNode(nnkInfix).add( ident("..")).add( newIntLitNode(3),newIntLitNode(5)) # iterate over the range 3..5 forStmt.add(rangeDef) forStmt.add(newCall(ident("echo"), newIntLitNode(3))) # meat of the loop result.add(forStmt) genRepeatEcho() # gives: # 3 # 3 # 3
The representation of the if
expression is subtle, but easy to traverse.
Concrete syntax:
if cond1: expr1 elif cond2: expr2 else: expr3
AST:
nnkIfExpr( nnkElifExpr(cond1, expr1), nnkElifExpr(cond2, expr2), nnkElseExpr(expr3) )
Double-hash (##
) comments in the code actually have their own format, using strVal
to get and set the comment text. Single-hash (#
) comments are ignored.
Concrete syntax:
## This is a comment ## This is part of the first comment stmt1 ## Yet another
AST:
nnkCommentStmt() # only appears once for the first two lines! stmt1 nnkCommentStmt() # another nnkCommentStmt because there is another comment # (separate from the first)
One of Nim's cool features is pragmas, which allow fine-tuning of various aspects of the language. They come in all types, such as adorning procs and objects, but the standalone emit
pragma shows the basics with the AST.
Concrete syntax:
{.emit: "#include <stdio.h>".}
AST:
nnkPragma( nnkExprColonExpr( nnkIdent(!"emit"), nnkStrLit("#include <stdio.h>") # the "argument" ) )
As many nnkIdent
appear as there are pragmas between {..}
. Note that the declaration of new pragmas is essentially the same:
Concrete syntax:
{.pragma: cdeclRename, cdecl.}
AST:
nnkPragma( nnkExprColonExpr( nnkIdent(!"pragma"), # this is always first when declaring a new pragma nnkIdent(!"cdeclRename") # the name of the pragma ), nnkIdent(!"cdecl") )
The representation of the if statement is subtle, but easy to traverse. If there is no else
branch, no nnkElse
child exists.
Concrete syntax:
if cond1: stmt1 elif cond2: stmt2 elif cond3: stmt3 else: stmt4
AST:
nnkIfStmt( nnkElifBranch(cond1, stmt1), nnkElifBranch(cond2, stmt2), nnkElifBranch(cond3, stmt3), nnkElse(stmt4) )
Like the if
statement, but the root has the kind nnkWhenStmt
.
Concrete syntax:
x = 42
AST:
nnkAsgn(nnkIdent(!"x"), nnkIntLit(42))
This is not the syntax for assignment when combined with var
, let
, or const
.
Concrete syntax:
stmt1 stmt2 stmt3
AST:
nnkStmtList(stmt1, stmt2, stmt3)
Concrete syntax:
case expr1 of expr2, expr3..expr4: stmt1 of expr5: stmt2 elif cond1: stmt3 else: stmt4
AST:
nnkCaseStmt( expr1, nnkOfBranch(expr2, nnkRange(expr3, expr4), stmt1), nnkOfBranch(expr5, stmt2), nnkElifBranch(cond1, stmt3), nnkElse(stmt4) )
The nnkElifBranch
and nnkElse
parts may be missing.
Concrete syntax:
while expr1: stmt1
AST:
nnkWhileStmt(expr1, stmt1)
Concrete syntax:
for ident1, ident2 in expr1: stmt1
AST:
nnkForStmt(ident1, ident2, expr1, stmt1)
Concrete syntax:
try: stmt1 except e1, e2: stmt2 except e3: stmt3 except: stmt4 finally: stmt5
AST:
nnkTryStmt( stmt1, nnkExceptBranch(e1, e2, stmt2), nnkExceptBranch(e3, stmt3), nnkExceptBranch(stmt4), nnkFinally(stmt5) )
Concrete syntax:
return expr1
AST:
nnkReturnStmt(expr1)
Like return
, but with nnkYieldStmt
kind.
nnkYieldStmt(expr1)
Like return
, but with nnkDiscardStmt
kind.
nnkDiscardStmt(expr1)
Concrete syntax:
continue
AST:
nnkContinueStmt()
Concrete syntax:
break otherLocation
AST:
nnkBreakStmt(nnkIdent(!"otherLocation"))
If break
is used without a jump-to location, nnkEmpty
replaces nnkIdent
.
Concrete syntax:
block name:
AST:
nnkBlockStmt(nnkIdent(!"name"), nnkStmtList(...))
A block
doesn't need an name, in which case nnkEmpty
is used.
Concrete syntax:
asm """ some asm """
AST:
nnkAsmStmt( nnkEmpty(), # for pragmas nnkTripleStrLit("some asm"), )
Nim's import
statement actually takes different variations depending on what keywords are present. Let's start with the simplest form.
Concrete syntax:
import math
AST:
nnkImportStmt(nnkIdent(!"math"))
With except
, we get nnkImportExceptStmt
.
Concrete syntax:
import math except pow
AST:
nnkImportExceptStmt(nnkIdent(!"math"),nnkIdent(!"pow"))
Note that import math as m
does not use a different node; rather, we use nnkImportStmt
with as
as an infix operator.
Concrete syntax:
import strutils as su
AST:
nnkImportStmt( nnkInfix( nnkIdent(!"as"), nnkIdent(!"strutils"), nnkIdent(!"su") ) )
If we use from ... import
, the result is different, too.
Concrete syntax:
from math import pow
AST:
nnkFromStmt(nnkIdent(!"math"), nnkIdent(!"pow"))
Using from math as m import pow
works identically to the as
modifier with the import
statement, but wrapped in nnkFromStmt
.
When you are making an imported module accessible by modules that import yours, the export
syntax is pretty straightforward.
Concrete syntax:
export unsigned
AST:
nnkExportStmt(nnkIdent(!"unsigned"))
Similar to the import
statement, the AST is different for export ... except
.
Concrete syntax:
export math except pow # we're going to implement our own exponentiation
AST:
nnkExportExceptStmt(nnkIdent(!"math"),nnkIdent(!"pow"))
Like a plain import
statement but with nnkIncludeStmt
.
Concrete syntax:
include blocks
AST:
nnkIncludeStmt(nnkIdent(!"blocks"))
Concrete syntax:
var a = 3
AST:
nnkVarSection( nnkIdentDefs( nnkIdent(!"a"), nnkEmpty(), # or nnkIdent(...) if the variable declares the type nnkIntLit(3), ) )
Note that either the second or third (or both) parameters above must exist, as the compiler needs to know the type somehow (which it can infer from the given assignment).
This is not the same AST for all uses of var
. See [Procedure declaration](http://nim-lang.org/docs/macros.html#statements-procedure-declaration) for details.
This is equivalent to var
, but with nnkLetSection
rather than nnkVarSection
.
Concrete syntax:
let v = 3
AST:
nnkLetSection( nnkIdentDefs( nnkIdent(!"a"), nnkEmpty(), # or nnkIdent(...) for the type nnkIntLit(3), ) )
Concrete syntax:
const a = 3
AST:
nnkConstSection( nnkConstDef( # not nnkConstDefs! nnkIdent(!"a"), nnkEmpty(), # or nnkIdent(...) if the variable declares the type nnkIntLit(3), # required in a const declaration! ) )
Starting with the simplest case, a type
section appears much like var
and const
.
Concrete syntax:
type A = int
AST:
nnkTypeSection( nnkTypeDef( nnkIdent(!"A"), nnkEmpty(), nnkIdent(!"int") ) )
Declaring distinct
types is similar, with the last nnkIdent
wrapped in nnkDistinctTy
.
Concrete syntax:
type MyInt = distinct int
AST:
# ... nnkTypeDef( nnkIdent(!"MyInt"), nnkEmpty(), nnkDistinctTy( nnkIdent(!"int") ) )
If a type section uses generic parameters, they are treated here:
Concrete syntax:
type A[T] = expr1
AST:
nnkTypeSection( nnkTypeDef( nnkIdent(!"A"), nnkGenericParams( nnkIdentDefs( nnkIdent(!"T"), nnkEmpty(), # if the type is declared with options, like # ``[T: SomeInteger]``, they are given here nnkEmpty(), ) ) expr1, ) )
Note that not all nnkTypeDef
utilize nnkIdent
as their their parameter. One of the most common uses of type declarations is to work with objects.
Concrete syntax:
type IO = object of RootObj
AST:
# ... nnkTypeDef( nnkIdent(!"IO"), nnkEmpty(), nnkObjectTy( nnkEmpty(), # no pragmas here nnkOfInherit( nnkIdent(!"RootObj") # inherits from RootObj ) nnkEmpty() ) )
Nim's object syntax is rich. Let's take a look at an involved example in its entirety to see some of the complexities.
Concrete syntax:
type Obj[T] = object {.inheritable.} name: string case isFat: bool of true: m: array[100_000, T] of false: m: array[10, T]
AST:
# ... nnkObjectTy( nnkPragma( nnkIdent(!"inheritable") ), nnkEmpty(), nnkRecList( # list of object parameters nnkIdentDefs( nnkIdent(!"name"), nnkIdent(!"string"), nnkEmpty() ), nnkRecCase( # case statement within object (not nnkCaseStmt) nnkIdentDefs( nnkIdent(!"isFat"), nnkIdent(!"bool"), nnkEmpty() ), nnkOfBranch( nnkIdent(!"true"), nnkRecList( # again, a list of object parameters nnkIdentDefs( nnkIdent(!"m"), nnkBracketExpr( nnkIdent(!"array"), nnkIntLit(100000), nnkIdent(!"T") ), nnkEmpty() ) ), nnkOfBranch( nnkIdent(!"false"), nnkRecList( nnkIdentDefs( nnkIdent(!"m"), nnkBracketExpr( nnkIdent(!"array"), nnkIntLit(10), nnkIdent(!"T") ), nnkEmpty() ) ) ) ) ) )
Using an enum
is similar to using an object
.
Concrete syntax:
type X = enum First
AST:
# ... nnkEnumTy( nnkEmpty(), nnkIdent(!"First") # you need at least one nnkIdent or the compiler complains )
The usage of concept
(experimental) is similar to objects.
Concrete syntax:
type Con = concept x,y,z (x & y & z) is string
AST:
# ... nnkTypeClassTy( # note this isn't nnkConceptTy! nnkArglist( # ... idents for x, y, z ) # ... )
Static types, like static[int]
, use nnkIdent
wrapped in nnkStaticTy
.
Concrete syntax:
type A[T: static[int]] = object
AST:
# ... within nnkGenericParams nnkIdentDefs( nnkIdent(!"T"), nnkStaticTy( nnkIdent(!"int") ), nnkEmpty() ) # ...
In general, declaring types mirrors this syntax (i.e., nnkStaticTy
for static
, etc.). Examples follow (exceptions marked by *
):
Nim type | Corresponding AST |
---|---|
static |
nnkStaticTy |
tuple |
nnkTupleTy |
var |
nnkVarTy |
ptr |
nnkPtrTy |
ref |
nnkRefTy |
distinct |
nnkDistinctTy |
enum |
nnkEnumTy |
concept |
nnkTypeClassTy * |
array |
nnkBracketExpr(nnkIdent(!"array"),... * |
proc |
nnkProcTy |
iterator |
nnkIteratorTy |
object |
nnkObjectTy |
Take special care when declaring types as proc
. The behavior is similar to Procedure declaration
, below, but does not treat nnkGenericParams
. Generic parameters are treated in the type, not the proc
itself.
Concrete syntax:
type MyProc[T] = proc(x: T)
AST:
# ... nnkTypeDef( nnkIdent(!"MyProc"), nnkGenericParams( # here, not with the proc # ... ) nnkProcTy( # behaves like a procedure declaration from here on nnkFormalParams( # ... ) ) )
The same syntax applies to iterator
(with nnkIteratorTy
), but does not apply to converter
or template
.
Concrete syntax:
mixin x
AST:
nnkMixinStmt(nnkIdent(!"x"))
Concrete syntax:
bind x
AST:
nnkBindStmt(nnkIdent(!"x"))
Let's take a look at a procedure with a lot of interesting aspects to get a feel for how procedure calls are broken down.
Concrete syntax:
proc hello*[T: SomeInteger](x: int = 3, y: float32): int {.inline.} = discard
AST:
nnkProcDef( nnkPostfix(nnkIdent(!"*"), nnkIdent(!"hello")), # the exported proc name nnkEmpty(), # patterns for term rewriting in templates and macros (not procs) nnkGenericParams( # generic type parameters, like with type declaration nnkIdentDefs( nnkIdent(!"T"), nnkIdent(!"SomeInteger") ) ), nnkFormalParams( nnkIdent(!"int"), # the first FormalParam is the return type. nnkEmpty() if there is none nnkIdentDefs( nnkIdent(!"x"), nnkIdent(!"int"), # type type (required for procs, not for templates) nnkIntLit(3) # a default value ), nnkIdentDefs( nnkIdent(!"y"), nnkIdent(!"float32"), nnkEmpty() ) nnkPragma(nnkIdent(!"inline")), nnkEmpty(), # reserved slot for future use nnkStmtList(nnkDiscardStmt(nnkEmpty())) # the meat of the proc ) )
There is another consideration. Nim has flexible type identification for its procs. Even though proc(a: int, b: int)
and proc(a, b: int)
are equivalent in the code, the AST is a little different for the latter.
Concrete syntax:
proc(a, b: int)
AST:
# ...AST as above... nnkFormalParams( nnkEmpty(), # no return here nnkIdentDefs( nnkIdent(!"a"), # the first parameter nnkIdent(!"b"), # directly to the second parameter nnkIdent(!"int"), # their shared type identifier nnkEmpty(), # default value would go here ) ), # ...
When a procedure uses the special var
type return variable, the result is different from that of a var section.
Concrete syntax:
proc hello(): var int
AST:
# ... nnkFormalParams( nnkVarTy( nnkIdent(!"int") ) )
The syntax for iterators is similar to procs, but with nnkIteratorDef
replacing nnkProcDef
.
Concrete syntax:
iterator nonsense[T](x: seq[T]): float {.closure.} = ...
AST:
nnkIteratorDef( nnkIdent(!"nonsense"), nnkEmpty(), ... )
A converter is similar to a proc.
Concrete syntax:
converter toBool(x: float): bool
AST:
nnkConverterDef( nnkIdent(!"toBool"), # ... )
Templates (as well as macros, as we'll see) have a slightly expanded AST when compared to procs and iterators. The reason for this is [term-rewriting macros](http://nim-lang.org/docs/manual.html#term-rewriting-macros). Notice the nnkEmpty()
as the second argument to nnkProcDef
and nnkIteratorDef
above? That's where the term-rewriting macros go.
Concrete syntax:
template optOpt{expr1}(a: int): int
AST:
nnkTemplateDef( nnkIdent(!"optOpt"), nnkStmtList( # instead of nnkEmpty() expr1 ), # follows like a proc or iterator )
If the template does not have types for its parameters, the type identifiers inside nnkFormalParams
just becomes nnkEmpty
.
Macros behave like templates, but nnkTemplateDef
is replaced with nnkMacroDef
.
There are several node kinds that are used for semantic checking or code generation. These are accessible from this module, but should not be used. Other node kinds are especially designed to make AST manipulations easier. These are explained here.
To be written.
NimNodeKind = enum nnkNone, nnkEmpty, nnkIdent, nnkSym, nnkType, nnkCharLit, nnkIntLit, nnkInt8Lit, nnkInt16Lit, nnkInt32Lit, nnkInt64Lit, nnkUIntLit, nnkUInt8Lit, nnkUInt16Lit, nnkUInt32Lit, nnkUInt64Lit, nnkFloatLit, nnkFloat32Lit, nnkFloat64Lit, nnkFloat128Lit, nnkStrLit, nnkRStrLit, nnkTripleStrLit, nnkNilLit, nnkMetaNode, nnkDotCall, nnkCommand, nnkCall, nnkCallStrLit, nnkInfix, nnkPrefix, nnkPostfix, nnkHiddenCallConv, nnkExprEqExpr, nnkExprColonExpr, nnkIdentDefs, nnkVarTuple, nnkPar, nnkObjConstr, nnkCurly, nnkCurlyExpr, nnkBracket, nnkBracketExpr, nnkPragmaExpr, nnkRange, nnkDotExpr, nnkCheckedFieldExpr, nnkDerefExpr, nnkIfExpr, nnkElifExpr, nnkElseExpr, nnkLambda, nnkDo, nnkAccQuoted, nnkTableConstr, nnkBind, nnkClosedSymChoice, nnkOpenSymChoice, nnkHiddenStdConv, nnkHiddenSubConv, nnkConv, nnkCast, nnkStaticExpr, nnkAddr, nnkHiddenAddr, nnkHiddenDeref, nnkObjDownConv, nnkObjUpConv, nnkChckRangeF, nnkChckRange64, nnkChckRange, nnkStringToCString, nnkCStringToString, nnkAsgn, nnkFastAsgn, nnkGenericParams, nnkFormalParams, nnkOfInherit, nnkImportAs, nnkProcDef, nnkMethodDef, nnkConverterDef, nnkMacroDef, nnkTemplateDef, nnkIteratorDef, nnkOfBranch, nnkElifBranch, nnkExceptBranch, nnkElse, nnkAsmStmt, nnkPragma, nnkPragmaBlock, nnkIfStmt, nnkWhenStmt, nnkForStmt, nnkParForStmt, nnkWhileStmt, nnkCaseStmt, nnkTypeSection, nnkVarSection, nnkLetSection, nnkConstSection, nnkConstDef, nnkTypeDef, nnkYieldStmt, nnkDefer, nnkTryStmt, nnkFinally, nnkRaiseStmt, nnkReturnStmt, nnkBreakStmt, nnkContinueStmt, nnkBlockStmt, nnkStaticStmt, nnkDiscardStmt, nnkStmtList, nnkImportStmt, nnkImportExceptStmt, nnkExportStmt, nnkExportExceptStmt, nnkFromStmt, nnkIncludeStmt, nnkBindStmt, nnkMixinStmt, nnkUsingStmt, nnkCommentStmt, nnkStmtListExpr, nnkBlockExpr, nnkStmtListType, nnkBlockType, nnkWith, nnkWithout, nnkTypeOfExpr, nnkObjectTy, nnkTupleTy, nnkTupleClassTy, nnkTypeClassTy, nnkStaticTy, nnkRecList, nnkRecCase, nnkRecWhen, nnkRefTy, nnkPtrTy, nnkVarTy, nnkConstTy, nnkMutableTy, nnkDistinctTy, nnkProcTy, nnkIteratorTy, nnkSharedTy, nnkEnumTy, nnkEnumFieldDef, nnkArglist, nnkPattern, nnkReturnToken, nnkClosure, nnkGotoState, nnkState, nnkBreakState
NimNodeKinds = set[NimNodeKind]
NimTypeKind = enum ntyNone, ntyBool, ntyChar, ntyEmpty, ntyAlias, ntyNil, ntyExpr, ntyStmt, ntyTypeDesc, ntyGenericInvocation, ntyGenericBody, ntyGenericInst, ntyGenericParam, ntyDistinct, ntyEnum, ntyOrdinal, ntyArray, ntyObject, ntyTuple, ntySet, ntyRange, ntyPtr, ntyRef, ntyVar, ntySequence, ntyProc, ntyPointer, ntyOpenArray, ntyString, ntyCString, ntyForward, ntyInt, ntyInt8, ntyInt16, ntyInt32, ntyInt64, ntyFloat, ntyFloat32, ntyFloat64, ntyFloat128, ntyUInt, ntyUInt8, ntyUInt16, ntyUInt32, ntyUInt64, ntyUnused0, ntyUnused1, ntyUnused2, ntyVarargs, ntyUnused, ntyError, ntyBuiltinTypeClass, ntyUserTypeClass, ntyUserTypeClassInst, ntyCompositeTypeClass, ntyInferred, ntyAnd, ntyOr, ntyNot, ntyAnything, ntyStatic, ntyFromExpr, ntyFieldAccessor, ntyVoid
TNimTypeKinds = set[NimTypeKind]
NimSymKind = enum nskUnknown, nskConditional, nskDynLib, nskParam, nskGenericParam, nskTemp, nskModule, nskType, nskVar, nskLet, nskConst, nskResult, nskProc, nskMethod, nskIterator, nskConverter, nskMacro, nskTemplate, nskField, nskEnumField, nskForVar, nskLabel, nskStub
TNimSymKinds = set[NimSymKind]
NimIdent = object of RootObj
NimSym = ref NimSymObj
BindSymRule = enum brClosed, ## only the symbols in current scope are bound brOpen, ## open wrt overloaded symbols, but may be a single ## symbol if not ambiguous (the rules match that of ## binding in generics) brForceOpen ## same as brOpen, but it will always be open even ## if not ambiguous (this cannot be achieved with ## any other means in the language currently)
bindSym
behaves LineInfo = object filename*: string line*, column*: int
nnkLiterals = {nnkCharLit..nnkNilLit}
nnkCallKinds = {nnkCall, nnkInfix, nnkPrefix, nnkPostfix, nnkCommand, nnkCallStrLit}
RoutineNodes = {nnkProcDef, nnkMethodDef, nnkDo, nnkLambda, nnkIteratorDef, nnkTemplateDef, nnkConverterDef}
AtomicNodes = {nnkNone..nnkNilLit}
CallNodes = {nnkCall, nnkInfix, nnkPrefix, nnkPostfix, nnkCommand, nnkCallStrLit, nnkHiddenCallConv}
proc `[]`(n: NimNode; i: int): NimNode {.magic: "NChild", noSideEffect.}
proc `[]=`(n: NimNode; i: int; child: NimNode) {.magic: "NSetChild", noSideEffect.}
proc `!`(s: string): NimIdent {.magic: "StrToIdent", noSideEffect.}
proc `$`(i: NimIdent): string {.magic: "IdentToStr", noSideEffect.}
proc `$`(s: NimSym): string {.magic: "IdentToStr", noSideEffect.}
proc `==`(a, b: NimIdent): bool {.magic: "EqIdent", noSideEffect.}
proc `==`(a, b: NimNode): bool {.magic: "EqNimrodNode", noSideEffect.}
proc `==`(a, b: NimSym): bool {.magic: "EqNimrodNode", noSideEffect.}
proc sameType(a, b: NimNode): bool {.magic: "SameNodeType", noSideEffect, raises: [], tags: [].}
proc len(n: NimNode): int {.magic: "NLen", noSideEffect.}
proc add(father, child: NimNode): NimNode {.magic: "NAdd", discardable, noSideEffect, locks: 0.}
proc add(father: NimNode; children: varargs[NimNode]): NimNode {. magic: "NAddMultiple", discardable, noSideEffect, locks: 0.}
proc del(father: NimNode; idx = 0; n = 1) {.magic: "NDel", noSideEffect.}
proc kind(n: NimNode): NimNodeKind {.magic: "NKind", noSideEffect.}
proc intVal(n: NimNode): BiggestInt {.magic: "NIntVal", noSideEffect.}
proc floatVal(n: NimNode): BiggestFloat {.magic: "NFloatVal", noSideEffect.}
proc symbol(n: NimNode): NimSym {.magic: "NSymbol", noSideEffect.}
proc ident(n: NimNode): NimIdent {.magic: "NIdent", noSideEffect.}
proc getType(n: NimNode): NimNode {.magic: "NGetType", noSideEffect.}
proc getType(n: typedesc): NimNode {.magic: "NGetType", noSideEffect.}
proc typeKind(n: NimNode): NimTypeKind {.magic: "NGetType", noSideEffect.}
proc getTypeInst(n: NimNode): NimNode {.magic: "NGetType", noSideEffect.}
proc getTypeInst(n: typedesc): NimNode {.magic: "NGetType", noSideEffect.}
proc getTypeImpl(n: NimNode): NimNode {.magic: "NGetType", noSideEffect.}
proc getTypeImpl(n: typedesc): NimNode {.magic: "NGetType", noSideEffect.}
proc strVal(n: NimNode): string {.magic: "NStrVal", noSideEffect.}
proc intVal=(n: NimNode; val: BiggestInt) {.magic: "NSetIntVal", noSideEffect.}
proc floatVal=(n: NimNode; val: BiggestFloat) {.magic: "NSetFloatVal", noSideEffect.}
proc symbol=(n: NimNode; val: NimSym) {.magic: "NSetSymbol", noSideEffect.}
proc ident=(n: NimNode; val: NimIdent) {.magic: "NSetIdent", noSideEffect.}
proc strVal=(n: NimNode; val: string) {.magic: "NSetStrVal", noSideEffect.}
proc newNimNode(kind: NimNodeKind; lineInfoFrom: NimNode = nil): NimNode {. magic: "NNewNimNode", noSideEffect.}
Creates a new AST node of the specified kind.
The lineInfoFrom
parameter is used for line information when the produced code crashes. You should ensure that it is set to a node that you are transforming.
proc copyNimNode(n: NimNode): NimNode {.magic: "NCopyNimNode", noSideEffect.}
proc copyNimTree(n: NimNode): NimNode {.magic: "NCopyNimTree", noSideEffect.}
proc getImpl(s: NimSym): NimNode {.magic: "GetImpl", noSideEffect, raises: [], tags: [].}
proc error(msg: string; n: NimNode = nil) {.magic: "NError", gcsafe, locks: 0.}
proc warning(msg: string) {.magic: "NWarning", gcsafe, locks: 0.}
proc hint(msg: string) {.magic: "NHint", gcsafe, locks: 0.}
proc newStrLitNode(s: string): NimNode {.compileTime, noSideEffect, raises: [], tags: [].}
proc newCommentStmtNode(s: string): NimNode {.compileTime, noSideEffect, raises: [], tags: [].}
proc newIntLitNode(i: BiggestInt): NimNode {.compileTime, raises: [], tags: [].}
proc newFloatLitNode(f: BiggestFloat): NimNode {.compileTime, raises: [], tags: [].}
proc newIdentNode(i: NimIdent): NimNode {.compileTime, raises: [], tags: [].}
proc newIdentNode(i: string): NimNode {.compileTime, raises: [], tags: [].}
proc bindSym(ident: string; rule: BindSymRule = brClosed): NimNode {.magic: "NBindSym", noSideEffect.}
rule == brClosed
either an nkClosedSymChoice
tree is returned or nkSym
if the symbol is not ambiguous. If rule == brOpen
either an nkOpenSymChoice
tree is returned or nkSym
if the symbol is not ambiguous. If rule == brForceOpen
always an nkOpenSymChoice
tree is returned even if the symbol is not ambiguous. proc genSym(kind: NimSymKind = nskLet; ident = ""): NimNode {.magic: "NGenSym", noSideEffect.}
proc callsite(): NimNode {.magic: "NCallSite", gcsafe, locks: 0.}
proc toStrLit(n: NimNode): NimNode {.compileTime, raises: [], tags: [].}
proc `$`(arg: LineInfo): string {.raises: [], tags: [].}
proc lineInfoObj(n: NimNode): LineInfo {.compileTime, raises: [], tags: [].}
proc lineInfo(arg: NimNode): string {.compileTime, raises: [], tags: [].}
proc internalErrorFlag(): string {.magic: "NError", noSideEffect.}
proc parseExpr(s: string): NimNode {.noSideEffect, compileTime, raises: [ValueError], tags: [].}
ValueError
for parsing errors. proc parseStmt(s: string): NimNode {.noSideEffect, compileTime, raises: [ValueError], tags: [].}
ValueError
for parsing errors. proc getAst(macroOrTemplate: untyped): NimNode {.magic: "ExpandToAst", noSideEffect.}
macro FooMacro() = var ast = getAst(BarTemplate())
proc quote(bl: typed; op = "``"): NimNode {.magic: "QuoteAst", noSideEffect.}
Quasi-quoting operator. Accepts an expression or a block and returns the AST that represents it. Within the quoted AST, you are able to interpolate NimNode expressions from the surrounding scope. If no operator is given, quoting is done using backticks. Otherwise, the given operator must be used as a prefix operator for any interpolated expression. The original meaning of the interpolation operator may be obtained by escaping it (by prefixing it with itself): e.g. @ is escaped as @@, @@ is escaped as @@@ and so on.
Example:
macro check(ex: expr): stmt = # this is a simplified version of the check macro from the # unittest module. # If there is a failed check, we want to make it easy for # the user to jump to the faulty line in the code, so we # get the line info here: var info = ex.lineinfo # We will also display the code string of the failed check: var expString = ex.toStrLit # Finally we compose the code to implement the check: result = quote do: if not `ex`: echo `info` & ": Check failed: " & `expString`
proc expectKind(n: NimNode; k: NimNodeKind) {.compileTime, raises: [], tags: [].}
proc expectMinLen(n: NimNode; min: int) {.compileTime, raises: [], tags: [].}
proc expectLen(n: NimNode; len: int) {.compileTime, raises: [], tags: [].}
proc newTree(kind: NimNodeKind; children: varargs[NimNode]): NimNode {.compileTime, raises: [], tags: [].}
proc newCall(theProc: NimNode; args: varargs[NimNode]): NimNode {.compileTime, raises: [], tags: [].}
args[0..]
. proc newCall(theProc: NimIdent; args: varargs[NimNode]): NimNode {.compileTime, raises: [], tags: [].}
args[0..]
. proc newCall(theProc: string; args: varargs[NimNode]): NimNode {.compileTime, raises: [], tags: [].}
args[0..]
. proc newLit(c: char): NimNode {.compileTime, raises: [], tags: [].}
proc newLit(i: int): NimNode {.compileTime, raises: [], tags: [].}
proc newLit(i: int8): NimNode {.compileTime, raises: [], tags: [].}
proc newLit(i: int16): NimNode {.compileTime, raises: [], tags: [].}
proc newLit(i: int32): NimNode {.compileTime, raises: [], tags: [].}
proc newLit(i: int64): NimNode {.compileTime, raises: [], tags: [].}
proc newLit(i: uint): NimNode {.compileTime, raises: [], tags: [].}
proc newLit(i: uint8): NimNode {.compileTime, raises: [], tags: [].}
proc newLit(i: uint16): NimNode {.compileTime, raises: [], tags: [].}
proc newLit(i: uint32): NimNode {.compileTime, raises: [], tags: [].}
proc newLit(i: uint64): NimNode {.compileTime, raises: [], tags: [].}
proc newLit(b: bool): NimNode {.compileTime, raises: [], tags: [].}
proc newLit(f: float32): NimNode {.compileTime, raises: [], tags: [].}
proc newLit(f: float64): NimNode {.compileTime, raises: [], tags: [].}
proc newLit(arg: object): NimNode {.compileTime.}
proc newLit[N, T](arg: array[N, T]): NimNode {.compileTime.}
proc newLit[T](arg: seq[T]): NimNode {.compileTime.}
proc newLit(arg: tuple): NimNode {.compileTime.}
proc newLit(s: string): NimNode {.compileTime, raises: [], tags: [].}
proc nestList(theProc: NimIdent; x: NimNode): NimNode {.compileTime, raises: [], tags: [].}
[a, b, c]
is transformed into theProc(a, theProc(c, d))
. proc treeRepr(n: NimNode): string {.compileTime, gcsafe, locks: 0, raises: [], tags: [].}
Convert the AST n to a human-readable tree-like string.
See also repr, lispRepr, and astGenRepr.
proc lispRepr(n: NimNode): string {.compileTime, gcsafe, locks: 0, raises: [], tags: [].}
Convert the AST n to a human-readable lisp-like string,
See also repr, treeRepr, and astGenRepr.
proc astGenRepr(n: NimNode): string {.compileTime, gcsafe, locks: 0, raises: [], tags: [].}
astGenRepr: echo "Hello world"
Would output:
nnkStmtList.newTree( nnkCommand.newTree( newIdentNode(!"echo"), newLit("Hello world") ) )
See also repr, treeRepr, and lispRepr.
proc newEmptyNode(): NimNode {.compileTime, noSideEffect, raises: [], tags: [].}
proc newStmtList(stmts: varargs[NimNode]): NimNode {.compileTime, raises: [], tags: [].}
proc newPar(exprs: varargs[NimNode]): NimNode {.compileTime, raises: [], tags: [].}
proc newBlockStmt(label, body: NimNode): NimNode {.compileTime, raises: [], tags: [].}
proc newBlockStmt(body: NimNode): NimNode {.compiletime, raises: [], tags: [].}
proc newVarStmt(name, value: NimNode): NimNode {.compiletime, raises: [], tags: [].}
proc newLetStmt(name, value: NimNode): NimNode {.compiletime, raises: [], tags: [].}
proc newConstStmt(name, value: NimNode): NimNode {.compileTime, raises: [], tags: [].}
proc newAssignment(lhs, rhs: NimNode): NimNode {.compileTime, raises: [], tags: [].}
proc newDotExpr(a, b: NimNode): NimNode {.compileTime, raises: [], tags: [].}
proc newColonExpr(a, b: NimNode): NimNode {.compileTime, raises: [], tags: [].}
proc newIdentDefs(name, kind: NimNode; default = newEmptyNode()): NimNode {.compileTime, raises: [], tags: [].}
Creates a new nnkIdentDefs
node of a specific kind and value.
nnkIdentDefs
need to have at least three children, but they can have more: first comes a list of identifiers followed by a type and value nodes. This helper proc creates a three node subtree, the first subnode being a single identifier name. Both the kind
node and default
(value) nodes may be empty depending on where the nnkIdentDefs
appears: tuple or object definitions will have an empty default
node, let
or var
blocks may have an empty kind
node if the identifier is being assigned a value. Example:
var varSection = newNimNode(nnkVarSection).add( newIdentDefs(ident("a"), ident("string")), newIdentDefs(ident("b"), newEmptyNode(), newLit(3))) # --> var # a: string # b = 3
If you need to create multiple identifiers you need to use the lower level newNimNode
:
result = newNimNode(nnkIdentDefs).add( ident("a"), ident("b"), ident("c"), ident("string"), newStrLitNode("Hello"))
proc newNilLit(): NimNode {.compileTime, raises: [], tags: [].}
proc last(node: NimNode): NimNode {.compileTime, raises: [], tags: [].}
proc expectKind(n: NimNode; k: set[NimNodeKind]) {.compileTime, raises: [], tags: [].}
proc newProc(name = newEmptyNode(); params: openArray[NimNode] = [newEmptyNode()]; body: NimNode = newStmtList(); procType = nnkProcDef): NimNode {. compileTime, raises: [], tags: [].}
shortcut for creating a new proc
The params
array must start with the return type of the proc, followed by a list of IdentDefs which specify the params.
proc newIfStmt(branches: varargs[tuple[cond, body: NimNode]]): NimNode {.compiletime, raises: [], tags: [].}
if
statements.newIfStmt( (Ident, StmtList), ... )
proc copyChildrenTo(src, dest: NimNode) {.compileTime, raises: [], tags: [].}
proc name(someProc: NimNode): NimNode {.compileTime, raises: [], tags: [].}
proc name=(someProc: NimNode; val: NimNode) {.compileTime, raises: [], tags: [].}
proc params(someProc: NimNode): NimNode {.compileTime, raises: [], tags: [].}
proc params=(someProc: NimNode; params: NimNode) {.compileTime, raises: [], tags: [].}
proc pragma(someProc: NimNode): NimNode {.compileTime, raises: [], tags: [].}
proc pragma=(someProc: NimNode; val: NimNode) {.compileTime, raises: [], tags: [].}
proc addPragma(someProc, pragma: NimNode) {.compileTime, raises: [], tags: [].}
proc body(someProc: NimNode): NimNode {.compileTime, raises: [], tags: [].}
proc body=(someProc: NimNode; val: NimNode) {.compileTime, raises: [], tags: [].}
proc `$`(node: NimNode): string {.compileTime, raises: [Exception], tags: [RootEffect].}
proc ident(name: string): NimNode {.compileTime, inline, raises: [], tags: [].}
proc insert(a: NimNode; pos: int; b: NimNode) {.compileTime, raises: [], tags: [].}
proc basename(a: NimNode): NimNode {.compiletime, gcsafe, locks: 0, raises: [], tags: [].}
proc basename=(a: NimNode; val: string) {.compileTime, raises: [], tags: [].}
proc postfix(node: NimNode; op: string): NimNode {.compileTime, raises: [], tags: [].}
proc prefix(node: NimNode; op: string): NimNode {.compileTime, raises: [], tags: [].}
proc infix(a: NimNode; op: string; b: NimNode): NimNode {.compileTime, raises: [], tags: [].}
proc unpackPostfix(node: NimNode): tuple[node: NimNode, op: string] {.compileTime, raises: [Exception], tags: [RootEffect].}
proc unpackPrefix(node: NimNode): tuple[node: NimNode, op: string] {.compileTime, raises: [Exception], tags: [RootEffect].}
proc unpackInfix(node: NimNode): tuple[left: NimNode, op: string, right: NimNode] {. compileTime, raises: [Exception], tags: [RootEffect].}
proc copy(node: NimNode): NimNode {.compileTime, raises: [], tags: [].}
proc eqIdent(a, b: string): bool {.raises: [], tags: [].}
proc eqIdent(node: NimNode; s: string): bool {.compileTime, raises: [Exception], tags: [RootEffect].}
nnkIdent
, nnkSym
, etc.) is the same as s
. Note that this is the preferred way to check! Most other ways like node.ident
are much more error-prone, unfortunately. proc hasArgOfName(params: NimNode; name: string): bool {.compiletime, raises: [Exception], tags: [RootEffect].}
proc addIdentIfAbsent(dest: NimNode; ident: string) {.compiletime, raises: [Exception], tags: [RootEffect].}
proc boolVal(n: NimNode): bool {.compileTime, noSideEffect, raises: [], tags: [].}
iterator items(n: NimNode): NimNode {.inline, raises: [], tags: [].}
n
. iterator children(n: NimNode): NimNode {.inline, raises: [], tags: [].}
n
. macro dumpTree(s: untyped): untyped
Accepts a block of nim code and prints the parsed abstract syntax tree using the treeRepr function. Printing is done at compile time.
You can use this as a tool to explore the Nim's abstract syntax tree and to discover what kind of nodes must be created to represent a certain expression/statement.
macro dumpLisp(s: untyped): untyped
Accepts a block of nim code and prints the parsed abstract syntax tree using the lispRepr function. Printing is done at compile time.
See dumpTree.
macro dumpAstGen(s: untyped): untyped
Accepts a block of nim code and prints the parsed abstract syntax tree using the astGenRepr function. Printing is done at compile time.
You can use this as a tool to write macros quicker by writing example outputs and then copying the snippets into the macro for modification.
See dumpTree.
macro dumpTreeImm(s: untyped): untyped {.deprecated.}
macro dumpLispImm(s: untyped): untyped {.deprecated.}
macro expandMacros(body: typed): untyped
Expands one level of macro - useful for debugging. Can be used to inspect what happens when a macro call is expanded, without altering its result.
For instance,
import future, macros let x = 10 y = 20 expandMacros: dump(x + y)
will actually dump x + y, but at the same time will print at compile time the expansion of the dump
macro, which in this case is debugEcho ["x + y", " = ", x + y]
.
template findChild(n: NimNode; cond: untyped): NimNode {.dirty.}
var res = findChild(n, it.kind == nnkPostfix and it.basename.ident == !"foo")
template emit(e: static[string]): untyped {.deprecated.}
emit("echo " & '"' & "hello world".toUpper & '"')
Deprecated since version 0.15 since it's so rarely useful.
© 2006–2017 Andreas Rumpf
Licensed under the MIT License.
https://nim-lang.org/docs/macros.html