numpy.piecewise(x, condlist, funclist, *args, **kw) [source]
Evaluate a piecewise-defined function.
Given a set of conditions and corresponding functions, evaluate each function on the input data wherever its condition is true.
| Parameters: |
x : ndarray or scalar The input domain. condlist : list of bool arrays or bool scalars Each boolean array corresponds to a function in Each boolean array in The length of funclist : list of callables, f(x,*args,**kw), or scalars Each function is evaluated over args : tuple, optional Any further arguments given to kw : dict, optional Keyword arguments used in calling |
|---|---|
| Returns: |
out : ndarray The output is the same shape and type as x and is found by calling the functions in |
This is similar to choose or select, except that functions are evaluated on elements of x that satisfy the corresponding condition from condlist.
The result is:
|--
|funclist[0](x[condlist[0]])
out = |funclist[1](x[condlist[1]])
|...
|funclist[n2](x[condlist[n2]])
|--
Define the sigma function, which is -1 for x < 0 and +1 for x >= 0.
>>> x = np.linspace(-2.5, 2.5, 6) >>> np.piecewise(x, [x < 0, x >= 0], [-1, 1]) array([-1., -1., -1., 1., 1., 1.])
Define the absolute value, which is -x for x <0 and x for x >= 0.
>>> np.piecewise(x, [x < 0, x >= 0], [lambda x: -x, lambda x: x]) array([ 2.5, 1.5, 0.5, 0.5, 1.5, 2.5])
Apply the same function to a scalar value.
>>> y = -2 >>> np.piecewise(y, [y < 0, y >= 0], [lambda x: -x, lambda x: x]) array(2)
© 2008–2017 NumPy Developers
Licensed under the NumPy License.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.piecewise.html