numpy.polynomial.legendre.legfromroots(roots) [source]
Generate a Legendre series with given roots.
The function returns the coefficients of the polynomial

in Legendre form, where the r_n are the roots specified in roots. If a zero has multiplicity n, then it must appear in roots n times. For instance, if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, then roots looks something like [2, 2, 2, 3, 3]. The roots can appear in any order.
If the returned coefficients are c, then

The coefficient of the last term is not generally 1 for monic polynomials in Legendre form.
| Parameters: |
roots : array_like Sequence containing the roots. |
|---|---|
| Returns: |
out : ndarray 1-D array of coefficients. If all roots are real then |
See also
polyfromroots, chebfromroots, lagfromroots, hermfromroots, hermefromroots.
>>> import numpy.polynomial.legendre as L >>> L.legfromroots((-1,0,1)) # x^3 - x relative to the standard basis array([ 0. , -0.4, 0. , 0.4]) >>> j = complex(0,1) >>> L.legfromroots((-j,j)) # x^2 + 1 relative to the standard basis array([ 1.33333333+0.j, 0.00000000+0.j, 0.66666667+0.j])
© 2008–2017 NumPy Developers
Licensed under the NumPy License.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.polynomial.legendre.legfromroots.html