DataFrame.aggregate(func, axis=0, *args, **kwargs) [source]
Aggregate using callable, string, dict, or list of string/callables
New in version 0.20.0.
| Parameters: |
func : callable, string, dictionary, or list of string/callables Function to use for aggregating the data. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply. For a DataFrame, can pass a dict, if the keys are DataFrame column names. Accepted Combinations are:
|
|---|---|
| Returns: |
aggregated : DataFrame |
See also
pandas.DataFrame.apply, pandas.DataFrame.transform, pandas.DataFrame.groupby.aggregate, pandas.DataFrame.resample.aggregate, pandas.DataFrame.rolling.aggregate
Numpy functions mean/median/prod/sum/std/var are special cased so the default behavior is applying the function along axis=0 (e.g., np.mean(arr_2d, axis=0)) as opposed to mimicking the default Numpy behavior (e.g., np.mean(arr_2d)).
agg is an alias for aggregate. Use the alias.
>>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C'],
... index=pd.date_range('1/1/2000', periods=10))
>>> df.iloc[3:7] = np.nan
Aggregate these functions across all columns
>>> df.agg(['sum', 'min'])
A B C
sum -0.182253 -0.614014 -2.909534
min -1.916563 -1.460076 -1.568297
Different aggregations per column
>>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']})
A B
max NaN 1.514318
min -1.916563 -1.460076
sum -0.182253 NaN
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
http://pandas.pydata.org/pandas-docs/version/0.22.0/generated/pandas.DataFrame.aggregate.html