class pandas.DatetimeIndex [source]
Immutable ndarray of datetime64 data, represented internally as int64, and which can be boxed to Timestamp objects that are subclasses of datetime and carry metadata such as frequency information.
| Parameters: |
data : array-like (1-dimensional), optional Optional datetime-like data to construct index with copy : bool Make a copy of input ndarray freq : string or pandas offset object, optional One of pandas date offset strings or corresponding objects start : starting value, datetime-like, optional If data is None, start is used as the start point in generating regular timestamp data. periods : int, optional, > 0 Number of periods to generate, if generating index. Takes precedence over end argument end : end time, datetime-like, optional If periods is none, generated index will extend to first conforming time on or just past end argument closed : string or None, default None Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both sides (None) tz : pytz.timezone or dateutil.tz.tzfile ambiguous : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’
infer_dst : boolean, default False Deprecated since version 0.15.0: Attempt to infer fall dst-transition hours based on order name : object Name to be stored in the index |
|---|
See also
Index
TimedeltaIndex
PeriodIndex
To learn more about the frequency strings, please see this link.
T | return the transpose, which is by definition self |
asi8 | |
asobject | return object Index which contains boxed values |
base | return the base object if the memory of the underlying data is |
data | return the data pointer of the underlying data |
date | Returns numpy array of python datetime.date objects (namely, the date part of Timestamps without timezone information). |
day | The days of the datetime |
dayofweek | The day of the week with Monday=0, Sunday=6 |
dayofyear | The ordinal day of the year |
days_in_month | The number of days in the month |
daysinmonth | The number of days in the month |
dtype | |
dtype_str | |
empty | |
flags | |
freq | get/set the frequency of the Index |
freqstr | Return the frequency object as a string if its set, otherwise None |
has_duplicates | |
hasnans | |
hour | The hours of the datetime |
inferred_freq | |
inferred_type | |
is_all_dates | |
is_leap_year | Logical indicating if the date belongs to a leap year |
is_monotonic | alias for is_monotonic_increasing (deprecated) |
is_monotonic_decreasing | return if the index is monotonic decreasing (only equal or |
is_monotonic_increasing | return if the index is monotonic increasing (only equal or |
is_month_end | Logical indicating if last day of month (defined by frequency) |
is_month_start | Logical indicating if first day of month (defined by frequency) |
is_normalized | |
is_quarter_end | Logical indicating if last day of quarter (defined by frequency) |
is_quarter_start | Logical indicating if first day of quarter (defined by frequency) |
is_unique | |
is_year_end | Logical indicating if last day of year (defined by frequency) |
is_year_start | Logical indicating if first day of year (defined by frequency) |
itemsize | return the size of the dtype of the item of the underlying data |
microsecond | The microseconds of the datetime |
minute | The minutes of the datetime |
month | The month as January=1, December=12 |
name | |
names | |
nanosecond | The nanoseconds of the datetime |
nbytes | return the number of bytes in the underlying data |
ndim | return the number of dimensions of the underlying data, |
nlevels | |
offset | |
quarter | The quarter of the date |
resolution | |
second | The seconds of the datetime |
shape | return a tuple of the shape of the underlying data |
size | return the number of elements in the underlying data |
strides | return the strides of the underlying data |
time | Returns numpy array of datetime.time. |
tz | |
tzinfo | Alias for tz attribute |
values | return the underlying data as an ndarray |
week | The week ordinal of the year |
weekday | The day of the week with Monday=0, Sunday=6 |
weekday_name | The name of day in a week (ex: Friday) |
weekofyear | The week ordinal of the year |
year | The year of the datetime |
all([other]) | |
any([other]) | |
append(other) | Append a collection of Index options together |
argmax([axis]) | Returns the indices of the maximum values along an axis. |
argmin([axis]) | Returns the indices of the minimum values along an axis. |
argsort(*args, **kwargs) | Returns the indices that would sort the index and its underlying data. |
asof(label) | For a sorted index, return the most recent label up to and including the passed label. |
asof_locs(where, mask) | where : array of timestamps |
astype(dtype[, copy]) | Create an Index with values cast to dtypes. |
ceil(freq) | ceil the index to the specified freq |
contains(key) | return a boolean if this key is IN the index |
copy([name, deep, dtype]) | Make a copy of this object. |
delete(loc) | Make a new DatetimeIndex with passed location(s) deleted. |
difference(other) | Return a new Index with elements from the index that are not in other. |
drop(labels[, errors]) | Make new Index with passed list of labels deleted |
drop_duplicates([keep]) | Return Index with duplicate values removed |
dropna([how]) | Return Index without NA/NaN values |
duplicated([keep]) | Return boolean np.ndarray denoting duplicate values |
equals(other) | Determines if two Index objects contain the same elements. |
factorize([sort, na_sentinel]) | Encode the object as an enumerated type or categorical variable |
fillna([value, downcast]) | Fill NA/NaN values with the specified value |
floor(freq) | floor the index to the specified freq |
format([name, formatter]) | Render a string representation of the Index |
get_duplicates() | |
get_indexer(target[, method, limit, tolerance]) | Compute indexer and mask for new index given the current index. |
get_indexer_for(target, **kwargs) | guaranteed return of an indexer even when non-unique |
get_indexer_non_unique(target) | Compute indexer and mask for new index given the current index. |
get_level_values(level) | Return an Index of values for requested level, equal to the length of the index. |
get_loc(key[, method, tolerance]) | Get integer location for requested label |
get_slice_bound(label, side, kind) | Calculate slice bound that corresponds to given label. |
get_value(series, key) | Fast lookup of value from 1-dimensional ndarray. |
get_value_maybe_box(series, key) | |
get_values() | return the underlying data as an ndarray |
groupby(values) | Group the index labels by a given array of values. |
holds_integer() | |
identical(other) | Similar to equals, but check that other comparable attributes are |
indexer_at_time(time[, asof]) | Select values at particular time of day (e.g. |
indexer_between_time(start_time, end_time[, ...]) | Select values between particular times of day (e.g., 9:00-9:30AM). |
insert(loc, item) | Make new Index inserting new item at location |
intersection(other) | Specialized intersection for DatetimeIndex objects. |
is_(other) | More flexible, faster check like is but that works through views |
is_boolean() | |
is_categorical() | |
is_floating() | |
is_integer() | |
is_interval() | |
is_lexsorted_for_tuple(tup) | |
is_mixed() | |
is_numeric() | |
is_object() | |
is_type_compatible(typ) | |
isin(values) | Compute boolean array of whether each index value is found in the |
isna() | Detect missing values |
isnull() | Detect missing values |
item() | return the first element of the underlying data as a python |
join(other[, how, level, return_indexers, sort]) | See Index.join |
map(f) | |
max([axis]) | Return the maximum value of the Index or maximum along an axis. |
memory_usage([deep]) | Memory usage of my values |
min([axis]) | Return the minimum value of the Index or minimum along an axis. |
normalize() | Return DatetimeIndex with times to midnight. |
notna() | Inverse of isna |
notnull() | Inverse of isna |
nunique([dropna]) | Return number of unique elements in the object. |
putmask(mask, value) | return a new Index of the values set with the mask |
ravel([order]) | return an ndarray of the flattened values of the underlying data |
reindex(target[, method, level, limit, ...]) | Create index with target’s values (move/add/delete values as necessary) |
rename(name[, inplace]) | Set new names on index. |
repeat(repeats, *args, **kwargs) | Analogous to ndarray.repeat |
reshape(*args, **kwargs) | NOT IMPLEMENTED: do not call this method, as reshaping is not supported for Index objects and will raise an error. |
round(freq, *args, **kwargs) | round the index to the specified freq |
searchsorted(value[, side, sorter]) | Find indices where elements should be inserted to maintain order. |
set_names(names[, level, inplace]) | Set new names on index. |
set_value(arr, key, value) | Fast lookup of value from 1-dimensional ndarray. |
shift(n[, freq]) | Specialized shift which produces a DatetimeIndex |
slice_indexer([start, end, step, kind]) | Return indexer for specified label slice. |
slice_locs([start, end, step, kind]) | Compute slice locations for input labels. |
snap([freq]) | Snap time stamps to nearest occurring frequency |
sort(*args, **kwargs) | |
sort_values([return_indexer, ascending]) | Return sorted copy of Index |
sortlevel([level, ascending, sort_remaining]) | For internal compatibility with with the Index API |
str | alias of StringMethods
|
strftime(date_format) | Return an array of formatted strings specified by date_format, which supports the same string format as the python standard library. |
summary([name]) | return a summarized representation |
symmetric_difference(other[, result_name]) | Compute the symmetric difference of two Index objects. |
take(indices[, axis, allow_fill, fill_value]) | return a new Index of the values selected by the indices |
to_datetime([dayfirst]) | |
to_frame([index]) | Create a DataFrame with a column containing the Index. |
to_julian_date() | Convert DatetimeIndex to Float64Index of Julian Dates. |
to_native_types([slicer]) | Format specified values of self and return them. |
to_period([freq]) | Cast to PeriodIndex at a particular frequency |
to_perioddelta(freq) | Calcuates TimedeltaIndex of difference between index values and index converted to PeriodIndex at specified freq. |
to_pydatetime() | Return DatetimeIndex as object ndarray of datetime.datetime objects |
to_series([keep_tz]) | Create a Series with both index and values equal to the index keys |
tolist() | return a list of the underlying data |
transpose(*args, **kwargs) | return the transpose, which is by definition self |
tz_convert(tz) | Convert tz-aware DatetimeIndex from one time zone to another (using |
tz_localize(tz[, ambiguous, errors]) | Localize tz-naive DatetimeIndex to given time zone (using |
union(other) | Specialized union for DatetimeIndex objects. |
union_many(others) | A bit of a hack to accelerate unioning a collection of indexes |
unique() | Return unique values in the object. |
value_counts([normalize, sort, ascending, ...]) | Returns object containing counts of unique values. |
view([cls]) | |
where(cond[, other]) |
New in version 0.19.0. |
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
http://pandas.pydata.org/pandas-docs/version/0.22.0/generated/pandas.DatetimeIndex.html