class pandas.Index [source]
Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas objects
| Parameters: |
data : array-like (1-dimensional) dtype : NumPy dtype (default: object) copy : bool Make a copy of input ndarray name : object Name to be stored in the index tupleize_cols : bool (default: True) When True, attempt to create a MultiIndex if possible |
|---|
See also
RangeIndex
CategoricalIndex
Categorical s.MultiIndex
IntervalIndex
Interval s.DatetimeIndex, TimedeltaIndex, PeriodIndex, Int64Index, UInt64Index, Float64Index
An Index instance can only contain hashable objects
>>> pd.Index([1, 2, 3]) Int64Index([1, 2, 3], dtype='int64')
>>> pd.Index(list('abc'))
Index(['a', 'b', 'c'], dtype='object')
T | return the transpose, which is by definition self |
asi8 | |
base | return the base object if the memory of the underlying data is |
data | return the data pointer of the underlying data |
dtype | |
dtype_str | |
empty | |
flags | |
has_duplicates | |
hasnans | |
inferred_type | |
is_all_dates | |
is_monotonic | alias for is_monotonic_increasing (deprecated) |
is_monotonic_decreasing | return if the index is monotonic decreasing (only equal or |
is_monotonic_increasing | return if the index is monotonic increasing (only equal or |
is_unique | |
itemsize | return the size of the dtype of the item of the underlying data |
name | |
names | |
nbytes | return the number of bytes in the underlying data |
ndim | return the number of dimensions of the underlying data, |
nlevels | |
shape | return a tuple of the shape of the underlying data |
size | return the number of elements in the underlying data |
strides | return the strides of the underlying data |
values | return the underlying data as an ndarray |
all(*args, **kwargs) | Return whether all elements are True |
any(*args, **kwargs) | Return whether any element is True |
append(other) | Append a collection of Index options together |
argmax([axis]) | return a ndarray of the maximum argument indexer |
argmin([axis]) | return a ndarray of the minimum argument indexer |
argsort(*args, **kwargs) | Returns the indices that would sort the index and its underlying data. |
asof(label) | For a sorted index, return the most recent label up to and including the passed label. |
asof_locs(where, mask) | where : array of timestamps |
astype(dtype[, copy]) | Create an Index with values cast to dtypes. |
contains(key) | return a boolean if this key is IN the index |
copy([name, deep, dtype]) | Make a copy of this object. |
delete(loc) | Make new Index with passed location(-s) deleted |
difference(other) | Return a new Index with elements from the index that are not in other. |
drop(labels[, errors]) | Make new Index with passed list of labels deleted |
drop_duplicates([keep]) | Return Index with duplicate values removed |
dropna([how]) | Return Index without NA/NaN values |
duplicated([keep]) | Return boolean np.ndarray denoting duplicate values |
equals(other) | Determines if two Index objects contain the same elements. |
factorize([sort, na_sentinel]) | Encode the object as an enumerated type or categorical variable |
fillna([value, downcast]) | Fill NA/NaN values with the specified value |
format([name, formatter]) | Render a string representation of the Index |
get_duplicates() | |
get_indexer(target[, method, limit, tolerance]) | Compute indexer and mask for new index given the current index. |
get_indexer_for(target, **kwargs) | guaranteed return of an indexer even when non-unique |
get_indexer_non_unique(target) | Compute indexer and mask for new index given the current index. |
get_level_values(level) | Return an Index of values for requested level, equal to the length of the index. |
get_loc(key[, method, tolerance]) | Get integer location, slice or boolean mask for requested label. |
get_slice_bound(label, side, kind) | Calculate slice bound that corresponds to given label. |
get_value(series, key) | Fast lookup of value from 1-dimensional ndarray. |
get_values() | return the underlying data as an ndarray |
groupby(values) | Group the index labels by a given array of values. |
holds_integer() | |
identical(other) | Similar to equals, but check that other comparable attributes are |
insert(loc, item) | Make new Index inserting new item at location. |
intersection(other) | Form the intersection of two Index objects. |
is_(other) | More flexible, faster check like is but that works through views |
is_boolean() | |
is_categorical() | |
is_floating() | |
is_integer() | |
is_interval() | |
is_lexsorted_for_tuple(tup) | |
is_mixed() | |
is_numeric() | |
is_object() | |
is_type_compatible(kind) | |
isin(values[, level]) | Compute boolean array of whether each index value is found in the passed set of values. |
isna() | Detect missing values |
isnull() | Detect missing values |
item() | return the first element of the underlying data as a python |
join(other[, how, level, return_indexers, sort]) | this is an internal non-public method |
map(mapper) | Apply mapper function to an index. |
max() | The maximum value of the object |
memory_usage([deep]) | Memory usage of my values |
min() | The minimum value of the object |
notna() | Inverse of isna |
notnull() | Inverse of isna |
nunique([dropna]) | Return number of unique elements in the object. |
putmask(mask, value) | return a new Index of the values set with the mask |
ravel([order]) | return an ndarray of the flattened values of the underlying data |
reindex(target[, method, level, limit, ...]) | Create index with target’s values (move/add/delete values as necessary) |
rename(name[, inplace]) | Set new names on index. |
repeat(repeats, *args, **kwargs) | Repeat elements of an Index. |
reshape(*args, **kwargs) | NOT IMPLEMENTED: do not call this method, as reshaping is not supported for Index objects and will raise an error. |
searchsorted(value[, side, sorter]) | Find indices where elements should be inserted to maintain order. |
set_names(names[, level, inplace]) | Set new names on index. |
set_value(arr, key, value) | Fast lookup of value from 1-dimensional ndarray. |
shift([periods, freq]) | Shift Index containing datetime objects by input number of periods and |
slice_indexer([start, end, step, kind]) | For an ordered Index, compute the slice indexer for input labels and |
slice_locs([start, end, step, kind]) | Compute slice locations for input labels. |
sort(*args, **kwargs) | |
sort_values([return_indexer, ascending]) | Return sorted copy of Index |
sortlevel([level, ascending, sort_remaining]) | For internal compatibility with with the Index API |
str | alias of StringMethods
|
summary([name]) | |
symmetric_difference(other[, result_name]) | Compute the symmetric difference of two Index objects. |
take(indices[, axis, allow_fill, fill_value]) | return a new Index of the values selected by the indices |
to_datetime([dayfirst]) | DEPRECATED: use pandas.to_datetime() instead. |
to_frame([index]) | Create a DataFrame with a column containing the Index. |
to_native_types([slicer]) | Format specified values of self and return them. |
to_series(**kwargs) | Create a Series with both index and values equal to the index keys |
tolist() | Return a list of the values. |
transpose(*args, **kwargs) | return the transpose, which is by definition self |
union(other) | Form the union of two Index objects and sorts if possible. |
unique() | Return unique values in the object. |
value_counts([normalize, sort, ascending, ...]) | Returns object containing counts of unique values. |
view([cls]) | |
where(cond[, other]) |
New in version 0.19.0. |
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
http://pandas.pydata.org/pandas-docs/version/0.22.0/generated/pandas.Index.html