classmethod Series.from_csv(path, sep=', ', parse_dates=True, header=None, index_col=0, encoding=None, infer_datetime_format=False) [source]
Read CSV file (DEPRECATED, please use pandas.read_csv() instead).
It is preferable to use the more powerful pandas.read_csv() for most general purposes, but from_csv makes for an easy roundtrip to and from a file (the exact counterpart of to_csv), especially with a time Series.
This method only differs from pandas.read_csv() in some defaults:
index_col is 0 instead of None (take first column as index by default)header is None instead of 0 (the first row is not used as the column names)parse_dates is True instead of False (try parsing the index as datetime by default)With pandas.read_csv(), the option squeeze=True can be used to return a Series like from_csv.
| Parameters: |
path : string file path or file handle / StringIO sep : string, default ‘,’ Field delimiter parse_dates : boolean, default True Parse dates. Different default from read_table header : int, default None Row to use as header (skip prior rows) index_col : int or sequence, default 0 Column to use for index. If a sequence is given, a MultiIndex is used. Different default from read_table encoding : string, optional a string representing the encoding to use if the contents are non-ascii, for python versions prior to 3 infer_datetime_format: boolean, default False If True and |
|---|---|
| Returns: |
y : Series |
See also
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
http://pandas.pydata.org/pandas-docs/version/0.22.0/generated/pandas.Series.from_csv.html