Series.reset_index(level=None, drop=False, name=None, inplace=False) [source]
Analogous to the pandas.DataFrame.reset_index() function, see docstring there.
| Parameters: |
level : int, str, tuple, or list, default None Only remove the given levels from the index. Removes all levels by default drop : boolean, default False Do not try to insert index into dataframe columns name : object, default None The name of the column corresponding to the Series values inplace : boolean, default False Modify the Series in place (do not create a new object) |
|---|---|
| Returns: |
resetted : DataFrame, or Series if drop == True |
>>> s = pd.Series([1, 2, 3, 4], index=pd.Index(['a', 'b', 'c', 'd'], ... name = 'idx')) >>> s.reset_index() index 0 0 0 1 1 1 2 2 2 3 3 3 4
>>> arrays = [np.array(['bar', 'bar', 'baz', 'baz', 'foo',
... 'foo', 'qux', 'qux']),
... np.array(['one', 'two', 'one', 'two', 'one', 'two',
... 'one', 'two'])]
>>> s2 = pd.Series(
... np.random.randn(8),
... index=pd.MultiIndex.from_arrays(arrays,
... names=['a', 'b']))
>>> s2.reset_index(level='a')
a 0
b
one bar -0.286320
two bar -0.587934
one baz 0.710491
two baz -1.429006
one foo 0.790700
two foo 0.824863
one qux -0.718963
two qux -0.055028
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
http://pandas.pydata.org/pandas-docs/version/0.22.0/generated/pandas.Series.reset_index.html