This example is based on Section 5.4.3 of “Gaussian Processes for Machine Learning” [RW2006]. It illustrates an example of complex kernel engineering and hyperparameter optimization using gradient ascent on the log-marginal-likelihood. The data consists of the monthly average atmospheric CO2 concentrations (in parts per million by volume (ppmv)) collected at the Mauna Loa Observatory in Hawaii, between 1958 and 1997. The objective is to model the CO2 concentration as a function of the time t.
The kernel is composed of several terms that are responsible for explaining different properties of the signal:
Maximizing the log-marginal-likelihood after subtracting the target’s mean yields the following kernel with an LML of -83.214:
34.4**2 * RBF(length_scale=41.8) + 3.27**2 * RBF(length_scale=180) * ExpSineSquared(length_scale=1.44, periodicity=1) + 0.446**2 * RationalQuadratic(alpha=17.7, length_scale=0.957) + 0.197**2 * RBF(length_scale=0.138) + WhiteKernel(noise_level=0.0336)
Thus, most of the target signal (34.4ppm) is explained by a long-term rising trend (length-scale 41.8 years). The periodic component has an amplitude of 3.27ppm, a decay time of 180 years and a length-scale of 1.44. The long decay time indicates that we have a locally very close to periodic seasonal component. The correlated noise has an amplitude of 0.197ppm with a length scale of 0.138 years and a white-noise contribution of 0.197ppm. Thus, the overall noise level is very small, indicating that the data can be very well explained by the model. The figure shows also that the model makes very confident predictions until around 2015.
Out:
GPML kernel: 66**2 * RBF(length_scale=67) + 2.4**2 * RBF(length_scale=90) * ExpSineSquared(length_scale=1.3, periodicity=1) + 0.66**2 * RationalQuadratic(alpha=0.78, length_scale=1.2) + 0.18**2 * RBF(length_scale=0.134) + WhiteKernel(noise_level=0.0361) Log-marginal-likelihood: -87.034 Learned kernel: 34.5**2 * RBF(length_scale=41.8) + 3.27**2 * RBF(length_scale=180) * ExpSineSquared(length_scale=1.44, periodicity=1) + 0.446**2 * RationalQuadratic(alpha=17.6, length_scale=0.957) + 0.197**2 * RBF(length_scale=0.138) + WhiteKernel(noise_level=0.0336) Log-marginal-likelihood: -83.214
print(__doc__) # Authors: Jan Hendrik Metzen <[email protected]> # # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels \ import RBF, WhiteKernel, RationalQuadratic, ExpSineSquared from sklearn.datasets import fetch_mldata data = fetch_mldata('mauna-loa-atmospheric-co2').data X = data[:, [1]] y = data[:, 0] # Kernel with parameters given in GPML book k1 = 66.0**2 * RBF(length_scale=67.0) # long term smooth rising trend k2 = 2.4**2 * RBF(length_scale=90.0) \ * ExpSineSquared(length_scale=1.3, periodicity=1.0) # seasonal component # medium term irregularity k3 = 0.66**2 \ * RationalQuadratic(length_scale=1.2, alpha=0.78) k4 = 0.18**2 * RBF(length_scale=0.134) \ + WhiteKernel(noise_level=0.19**2) # noise terms kernel_gpml = k1 + k2 + k3 + k4 gp = GaussianProcessRegressor(kernel=kernel_gpml, alpha=0, optimizer=None, normalize_y=True) gp.fit(X, y) print("GPML kernel: %s" % gp.kernel_) print("Log-marginal-likelihood: %.3f" % gp.log_marginal_likelihood(gp.kernel_.theta)) # Kernel with optimized parameters k1 = 50.0**2 * RBF(length_scale=50.0) # long term smooth rising trend k2 = 2.0**2 * RBF(length_scale=100.0) \ * ExpSineSquared(length_scale=1.0, periodicity=1.0, periodicity_bounds="fixed") # seasonal component # medium term irregularities k3 = 0.5**2 * RationalQuadratic(length_scale=1.0, alpha=1.0) k4 = 0.1**2 * RBF(length_scale=0.1) \ + WhiteKernel(noise_level=0.1**2, noise_level_bounds=(1e-3, np.inf)) # noise terms kernel = k1 + k2 + k3 + k4 gp = GaussianProcessRegressor(kernel=kernel, alpha=0, normalize_y=True) gp.fit(X, y) print("\nLearned kernel: %s" % gp.kernel_) print("Log-marginal-likelihood: %.3f" % gp.log_marginal_likelihood(gp.kernel_.theta)) X_ = np.linspace(X.min(), X.max() + 30, 1000)[:, np.newaxis] y_pred, y_std = gp.predict(X_, return_std=True) # Illustration plt.scatter(X, y, c='k') plt.plot(X_, y_pred) plt.fill_between(X_[:, 0], y_pred - y_std, y_pred + y_std, alpha=0.5, color='k') plt.xlim(X_.min(), X_.max()) plt.xlabel("Year") plt.ylabel(r"CO$_2$ in ppm") plt.title(r"Atmospheric CO$_2$ concentration at Mauna Loa") plt.tight_layout() plt.show()
Total running time of the script: ( 0 minutes 9.646 seconds)
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_co2.html