Here a sine function is fit with a polynomial of order 3, for values close to zero.
Robust fitting is demoed in different situations:
The median absolute deviation to non corrupt new data is used to judge the quality of the prediction.
What we can see that:
from matplotlib import pyplot as plt import numpy as np from sklearn.linear_model import ( LinearRegression, TheilSenRegressor, RANSACRegressor, HuberRegressor) from sklearn.metrics import mean_squared_error from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import make_pipeline np.random.seed(42) X = np.random.normal(size=400) y = np.sin(X) # Make sure that it X is 2D X = X[:, np.newaxis] X_test = np.random.normal(size=200) y_test = np.sin(X_test) X_test = X_test[:, np.newaxis] y_errors = y.copy() y_errors[::3] = 3 X_errors = X.copy() X_errors[::3] = 3 y_errors_large = y.copy() y_errors_large[::3] = 10 X_errors_large = X.copy() X_errors_large[::3] = 10 estimators = [('OLS', LinearRegression()), ('Theil-Sen', TheilSenRegressor(random_state=42)), ('RANSAC', RANSACRegressor(random_state=42)), ('HuberRegressor', HuberRegressor())] colors = {'OLS': 'turquoise', 'Theil-Sen': 'gold', 'RANSAC': 'lightgreen', 'HuberRegressor': 'black'} linestyle = {'OLS': '-', 'Theil-Sen': '-.', 'RANSAC': '--', 'HuberRegressor': '--'} lw = 3 x_plot = np.linspace(X.min(), X.max()) for title, this_X, this_y in [ ('Modeling Errors Only', X, y), ('Corrupt X, Small Deviants', X_errors, y), ('Corrupt y, Small Deviants', X, y_errors), ('Corrupt X, Large Deviants', X_errors_large, y), ('Corrupt y, Large Deviants', X, y_errors_large)]: plt.figure(figsize=(5, 4)) plt.plot(this_X[:, 0], this_y, 'b+') for name, estimator in estimators: model = make_pipeline(PolynomialFeatures(3), estimator) model.fit(this_X, this_y) mse = mean_squared_error(model.predict(X_test), y_test) y_plot = model.predict(x_plot[:, np.newaxis]) plt.plot(x_plot, y_plot, color=colors[name], linestyle=linestyle[name], linewidth=lw, label='%s: error = %.3f' % (name, mse)) legend_title = 'Error of Mean\nAbsolute Deviation\nto Non-corrupt Data' legend = plt.legend(loc='upper right', frameon=False, title=legend_title, prop=dict(size='x-small')) plt.xlim(-4, 10.2) plt.ylim(-2, 10.2) plt.title(title) plt.show()
Total running time of the script: ( 0 minutes 5.017 seconds)
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/auto_examples/linear_model/plot_robust_fit.html