W3cubDocs

/scikit-learn

Concatenating multiple feature extraction methods

In many real-world examples, there are many ways to extract features from a dataset. Often it is beneficial to combine several methods to obtain good performance. This example shows how to use FeatureUnion to combine features obtained by PCA and univariate selection.

Combining features using this transformer has the benefit that it allows cross validation and grid searches over the whole process.

The combination used in this example is not particularly helpful on this dataset and is only used to illustrate the usage of FeatureUnion.

Out:

Fitting 3 folds for each of 18 candidates, totalling 54 fits
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1
[CV]  features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1, score=0.9607843137254902, total=   0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1
[CV]  features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1, score=0.9019607843137255, total=   0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1
[CV]  features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1, score=0.9791666666666666, total=   0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=1
[CV]  features__pca__n_components=1, features__univ_select__k=1, svm__C=1, score=0.9411764705882353, total=   0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=1
[CV]  features__pca__n_components=1, features__univ_select__k=1, svm__C=1, score=0.9215686274509803, total=   0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=1
[CV]  features__pca__n_components=1, features__univ_select__k=1, svm__C=1, score=0.9791666666666666, total=   0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=10
[CV]  features__pca__n_components=1, features__univ_select__k=1, svm__C=10, score=0.9607843137254902, total=   0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=10
[CV]  features__pca__n_components=1, features__univ_select__k=1, svm__C=10, score=0.9215686274509803, total=   0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=10
[CV]  features__pca__n_components=1, features__univ_select__k=1, svm__C=10, score=0.9791666666666666, total=   0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1
[CV]  features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1, score=0.9607843137254902, total=   0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1
[CV]  features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1, score=0.9215686274509803, total=   0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1
[CV]  features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1, score=0.9791666666666666, total=   0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=1
[CV]  features__pca__n_components=1, features__univ_select__k=2, svm__C=1, score=0.9607843137254902, total=   0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=1
[CV]  features__pca__n_components=1, features__univ_select__k=2, svm__C=1, score=0.9215686274509803, total=   0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=1
[CV]  features__pca__n_components=1, features__univ_select__k=2, svm__C=1, score=1.0, total=   0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=10
[CV]  features__pca__n_components=1, features__univ_select__k=2, svm__C=10, score=0.9803921568627451, total=   0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=10
[CV]  features__pca__n_components=1, features__univ_select__k=2, svm__C=10, score=0.9019607843137255, total=   0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=10
[CV]  features__pca__n_components=1, features__univ_select__k=2, svm__C=10, score=1.0, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1
[CV]  features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1, score=0.9607843137254902, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1
[CV]  features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1, score=0.9019607843137255, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1
[CV]  features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1, score=0.9791666666666666, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=1
[CV]  features__pca__n_components=2, features__univ_select__k=1, svm__C=1, score=0.9803921568627451, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=1
[CV]  features__pca__n_components=2, features__univ_select__k=1, svm__C=1, score=0.9411764705882353, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=1
[CV]  features__pca__n_components=2, features__univ_select__k=1, svm__C=1, score=0.9791666666666666, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=10
[CV]  features__pca__n_components=2, features__univ_select__k=1, svm__C=10, score=0.9803921568627451, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=10
[CV]  features__pca__n_components=2, features__univ_select__k=1, svm__C=10, score=0.9411764705882353, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=10
[CV]  features__pca__n_components=2, features__univ_select__k=1, svm__C=10, score=0.9791666666666666, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1
[CV]  features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1, score=0.9803921568627451, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1
[CV]  features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1, score=0.9411764705882353, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1
[CV]  features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1, score=0.9791666666666666, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=1
[CV]  features__pca__n_components=2, features__univ_select__k=2, svm__C=1, score=1.0, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=1
[CV]  features__pca__n_components=2, features__univ_select__k=2, svm__C=1, score=0.9607843137254902, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=1
[CV]  features__pca__n_components=2, features__univ_select__k=2, svm__C=1, score=0.9791666666666666, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=10
[CV]  features__pca__n_components=2, features__univ_select__k=2, svm__C=10, score=0.9803921568627451, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=10
[CV]  features__pca__n_components=2, features__univ_select__k=2, svm__C=10, score=0.9215686274509803, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=10
[CV]  features__pca__n_components=2, features__univ_select__k=2, svm__C=10, score=1.0, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1
[CV]  features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1, score=0.9803921568627451, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1
[CV]  features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1, score=0.9411764705882353, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1
[CV]  features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1, score=0.9791666666666666, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=1
[CV]  features__pca__n_components=3, features__univ_select__k=1, svm__C=1, score=1.0, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=1
[CV]  features__pca__n_components=3, features__univ_select__k=1, svm__C=1, score=0.9411764705882353, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=1
[CV]  features__pca__n_components=3, features__univ_select__k=1, svm__C=1, score=0.9791666666666666, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=10
[CV]  features__pca__n_components=3, features__univ_select__k=1, svm__C=10, score=1.0, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=10
[CV]  features__pca__n_components=3, features__univ_select__k=1, svm__C=10, score=0.9215686274509803, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=10
[CV]  features__pca__n_components=3, features__univ_select__k=1, svm__C=10, score=1.0, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1
[CV]  features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1, score=0.9803921568627451, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1
[CV]  features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1, score=0.9411764705882353, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1
[CV]  features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1, score=0.9791666666666666, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=1
[CV]  features__pca__n_components=3, features__univ_select__k=2, svm__C=1, score=1.0, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=1
[CV]  features__pca__n_components=3, features__univ_select__k=2, svm__C=1, score=0.9607843137254902, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=1
[CV]  features__pca__n_components=3, features__univ_select__k=2, svm__C=1, score=0.9791666666666666, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=10
[CV]  features__pca__n_components=3, features__univ_select__k=2, svm__C=10, score=1.0, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=10
[CV]  features__pca__n_components=3, features__univ_select__k=2, svm__C=10, score=0.9215686274509803, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=10
[CV]  features__pca__n_components=3, features__univ_select__k=2, svm__C=10, score=1.0, total=   0.0s
Pipeline(memory=None,
     steps=[('features', FeatureUnion(n_jobs=1,
       transformer_list=[('pca', PCA(copy=True, iterated_power='auto', n_components=2, random_state=None,
  svd_solver='auto', tol=0.0, whiten=False)), ('univ_select', SelectKBest(k=2, score_func=<function f_classif at 0x2b3aa35f6840>))],
       transformer...,
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False))])
# Author: Andreas Mueller <[email protected]>
#
# License: BSD 3 clause

from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
from sklearn.datasets import load_iris
from sklearn.decomposition import PCA
from sklearn.feature_selection import SelectKBest

iris = load_iris()

X, y = iris.data, iris.target

# This dataset is way too high-dimensional. Better do PCA:
pca = PCA(n_components=2)

# Maybe some original features where good, too?
selection = SelectKBest(k=1)

# Build estimator from PCA and Univariate selection:

combined_features = FeatureUnion([("pca", pca), ("univ_select", selection)])

# Use combined features to transform dataset:
X_features = combined_features.fit(X, y).transform(X)

svm = SVC(kernel="linear")

# Do grid search over k, n_components and C:

pipeline = Pipeline([("features", combined_features), ("svm", svm)])

param_grid = dict(features__pca__n_components=[1, 2, 3],
                  features__univ_select__k=[1, 2],
                  svm__C=[0.1, 1, 10])

grid_search = GridSearchCV(pipeline, param_grid=param_grid, verbose=10)
grid_search.fit(X, y)
print(grid_search.best_estimator_)

Total running time of the script: ( 0 minutes 0.449 seconds)

Generated by Sphinx-Gallery

© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/auto_examples/plot_feature_stacker.html