Find the optimal separating hyperplane using an SVC for classes that are unbalanced.
We first find the separating plane with a plain SVC and then plot (dashed) the separating hyperplane with automatically correction for unbalanced classes.
Note
This example will also work by replacing SVC(kernel="linear")
with SGDClassifier(loss="hinge")
. Setting the loss
parameter of the SGDClassifier
equal to hinge
will yield behaviour such as that of a SVC with a linear kernel.
For example try instead of the SVC
:
clf = SGDClassifier(n_iter=100, alpha=0.01)
print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm # we create clusters with 1000 and 100 points rng = np.random.RandomState(0) n_samples_1 = 1000 n_samples_2 = 100 X = np.r_[1.5 * rng.randn(n_samples_1, 2), 0.5 * rng.randn(n_samples_2, 2) + [2, 2]] y = [0] * (n_samples_1) + [1] * (n_samples_2) # fit the model and get the separating hyperplane clf = svm.SVC(kernel='linear', C=1.0) clf.fit(X, y) # fit the model and get the separating hyperplane using weighted classes wclf = svm.SVC(kernel='linear', class_weight={1: 10}) wclf.fit(X, y) # plot separating hyperplanes and samples plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired, edgecolors='k') plt.legend() # plot the decision functions for both classifiers ax = plt.gca() xlim = ax.get_xlim() ylim = ax.get_ylim() # create grid to evaluate model xx = np.linspace(xlim[0], xlim[1], 30) yy = np.linspace(ylim[0], ylim[1], 30) YY, XX = np.meshgrid(yy, xx) xy = np.vstack([XX.ravel(), YY.ravel()]).T # get the separating hyperplane Z = clf.decision_function(xy).reshape(XX.shape) # plot decision boundary and margins a = ax.contour(XX, YY, Z, colors='k', levels=[0], alpha=0.5, linestyles=['-']) # get the separating hyperplane for weighted classes Z = wclf.decision_function(xy).reshape(XX.shape) # plot decision boundary and margins for weighted classes b = ax.contour(XX, YY, Z, colors='r', levels=[0], alpha=0.5, linestyles=['-']) plt.legend([a.collections[0], b.collections[0]], ["non weighted", "weighted"], loc="upper right") plt.show()
Total running time of the script: ( 0 minutes 0.062 seconds)
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane_unbalanced.html