Compares FeatureHasher and DictVectorizer by using both to vectorize text documents.
The example demonstrates syntax and speed only; it doesn’t actually do anything useful with the extracted vectors. See the example scripts {document_classification_20newsgroups,clustering}.py for actual learning on text documents.
A discrepancy between the number of terms reported for DictVectorizer and for FeatureHasher is to be expected due to hash collisions.
# Author: Lars Buitinck # License: BSD 3 clause from __future__ import print_function from collections import defaultdict import re import sys from time import time import numpy as np from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction import DictVectorizer, FeatureHasher def n_nonzero_columns(X): """Returns the number of non-zero columns in a CSR matrix X.""" return len(np.unique(X.nonzero()[1])) def tokens(doc): """Extract tokens from doc. This uses a simple regex to break strings into tokens. For a more principled approach, see CountVectorizer or TfidfVectorizer. """ return (tok.lower() for tok in re.findall(r"\w+", doc)) def token_freqs(doc): """Extract a dict mapping tokens from doc to their frequencies.""" freq = defaultdict(int) for tok in tokens(doc): freq[tok] += 1 return freq categories = [ 'alt.atheism', 'comp.graphics', 'comp.sys.ibm.pc.hardware', 'misc.forsale', 'rec.autos', 'sci.space', 'talk.religion.misc', ] # Uncomment the following line to use a larger set (11k+ documents) #categories = None print(__doc__) print("Usage: %s [n_features_for_hashing]" % sys.argv[0]) print(" The default number of features is 2**18.") print() try: n_features = int(sys.argv[1]) except IndexError: n_features = 2 ** 18 except ValueError: print("not a valid number of features: %r" % sys.argv[1]) sys.exit(1) print("Loading 20 newsgroups training data") raw_data = fetch_20newsgroups(subset='train', categories=categories).data data_size_mb = sum(len(s.encode('utf-8')) for s in raw_data) / 1e6 print("%d documents - %0.3fMB" % (len(raw_data), data_size_mb)) print() print("DictVectorizer") t0 = time() vectorizer = DictVectorizer() vectorizer.fit_transform(token_freqs(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % len(vectorizer.get_feature_names())) print() print("FeatureHasher on frequency dicts") t0 = time() hasher = FeatureHasher(n_features=n_features) X = hasher.transform(token_freqs(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % n_nonzero_columns(X)) print() print("FeatureHasher on raw tokens") t0 = time() hasher = FeatureHasher(n_features=n_features, input_type="string") X = hasher.transform(tokens(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % n_nonzero_columns(X))
Total running time of the script: ( 0 minutes 0.000 seconds)
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/auto_examples/text/hashing_vs_dict_vectorizer.html