class sklearn.cluster.AffinityPropagation(damping=0.5, max_iter=200, convergence_iter=15, copy=True, preference=None, affinity=’euclidean’, verbose=False)
[source]
Perform Affinity Propagation Clustering of data.
Read more in the User Guide.
Parameters: |
damping : float, optional, default: 0.5 Damping factor (between 0.5 and 1) is the extent to which the current value is maintained relative to incoming values (weighted 1 - damping). This in order to avoid numerical oscillations when updating these values (messages). max_iter : int, optional, default: 200 Maximum number of iterations. convergence_iter : int, optional, default: 15 Number of iterations with no change in the number of estimated clusters that stops the convergence. copy : boolean, optional, default: True Make a copy of input data. preference : array-like, shape (n_samples,) or float, optional Preferences for each point - points with larger values of preferences are more likely to be chosen as exemplars. The number of exemplars, ie of clusters, is influenced by the input preferences value. If the preferences are not passed as arguments, they will be set to the median of the input similarities. affinity : string, optional, default=``euclidean`` Which affinity to use. At the moment verbose : boolean, optional, default: False Whether to be verbose. |
---|---|
Attributes: |
cluster_centers_indices_ : array, shape (n_clusters,) Indices of cluster centers cluster_centers_ : array, shape (n_clusters, n_features) Cluster centers (if affinity != labels_ : array, shape (n_samples,) Labels of each point affinity_matrix_ : array, shape (n_samples, n_samples) Stores the affinity matrix used in n_iter_ : int Number of iterations taken to converge. |
For an example, see examples/cluster/plot_affinity_propagation.py.
The algorithmic complexity of affinity propagation is quadratic in the number of points.
Brendan J. Frey and Delbert Dueck, “Clustering by Passing Messages Between Data Points”, Science Feb. 2007
fit (X[, y]) | Create affinity matrix from negative euclidean distances, then apply affinity propagation clustering. |
fit_predict (X[, y]) | Performs clustering on X and returns cluster labels. |
get_params ([deep]) | Get parameters for this estimator. |
predict (X) | Predict the closest cluster each sample in X belongs to. |
set_params (**params) | Set the parameters of this estimator. |
__init__(damping=0.5, max_iter=200, convergence_iter=15, copy=True, preference=None, affinity=’euclidean’, verbose=False)
[source]
fit(X, y=None)
[source]
Create affinity matrix from negative euclidean distances, then apply affinity propagation clustering.
Parameters: |
X : array-like, shape (n_samples, n_features) or (n_samples, n_samples) Data matrix or, if affinity is y : Ignored |
---|
fit_predict(X, y=None)
[source]
Performs clustering on X and returns cluster labels.
Parameters: |
X : ndarray, shape (n_samples, n_features) Input data. |
---|---|
Returns: |
y : ndarray, shape (n_samples,) cluster labels |
get_params(deep=True)
[source]
Get parameters for this estimator.
Parameters: |
deep : boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. |
---|---|
Returns: |
params : mapping of string to any Parameter names mapped to their values. |
predict(X)
[source]
Predict the closest cluster each sample in X belongs to.
Parameters: |
X : {array-like, sparse matrix}, shape (n_samples, n_features) New data to predict. |
---|---|
Returns: |
labels : array, shape (n_samples,) Index of the cluster each sample belongs to. |
set_params(**params)
[source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Returns: | self : |
---|
sklearn.cluster.AffinityPropagation
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html