Warning
DEPRECATED
class sklearn.cross_validation.StratifiedKFold(y, n_folds=3, shuffle=False, random_state=None)
[source]
Stratified K-Folds cross validation iterator
Deprecated since version 0.18: This module will be removed in 0.20. Use sklearn.model_selection.StratifiedKFold
instead.
Provides train/test indices to split data in train test sets.
This cross-validation object is a variation of KFold that returns stratified folds. The folds are made by preserving the percentage of samples for each class.
Read more in the User Guide.
Parameters: |
y : array-like, [n_samples] Samples to split in K folds. n_folds : int, default=3 Number of folds. Must be at least 2. shuffle : boolean, optional Whether to shuffle each stratification of the data before splitting into batches. random_state : int, RandomState instance or None, optional, default=None If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by |
---|
See also
LabelKFold
All the folds have size trunc(n_samples / n_folds), the last one has the complementary.
>>> from sklearn.cross_validation import StratifiedKFold >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> skf = StratifiedKFold(y, n_folds=2) >>> len(skf) 2 >>> print(skf) sklearn.cross_validation.StratifiedKFold(labels=[0 0 1 1], n_folds=2, shuffle=False, random_state=None) >>> for train_index, test_index in skf: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 3] TEST: [0 2] TRAIN: [0 2] TEST: [1 3] .. automethod:: __init__
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.StratifiedKFold.html