W3cubDocs

/scikit-learn

sklearn.cross_validation.StratifiedShuffleSplit

Warning

DEPRECATED

class sklearn.cross_validation.StratifiedShuffleSplit(y, n_iter=10, test_size=0.1, train_size=None, random_state=None) [source]

Stratified ShuffleSplit cross validation iterator

Deprecated since version 0.18: This module will be removed in 0.20. Use sklearn.model_selection.StratifiedShuffleSplit instead.

Provides train/test indices to split data in train test sets.

This cross-validation object is a merge of StratifiedKFold and ShuffleSplit, which returns stratified randomized folds. The folds are made by preserving the percentage of samples for each class.

Note: like the ShuffleSplit strategy, stratified random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets.

Read more in the User Guide.

Parameters:

y : array, [n_samples]

Labels of samples.

n_iter : int (default 10)

Number of re-shuffling & splitting iterations.

test_size : float (default 0.1), int, or None

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size.

train_size : float, int, or None (default is None)

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size.

random_state : int, RandomState instance or None, optional (default None)

If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.

Examples

>>> from sklearn.cross_validation import StratifiedShuffleSplit
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 1, 1])
>>> sss = StratifiedShuffleSplit(y, 3, test_size=0.5, random_state=0)
>>> len(sss)
3
>>> print(sss)       
StratifiedShuffleSplit(labels=[0 0 1 1], n_iter=3, ...)
>>> for train_index, test_index in sss:
...    print("TRAIN:", train_index, "TEST:", test_index)
...    X_train, X_test = X[train_index], X[test_index]
...    y_train, y_test = y[train_index], y[test_index]
TRAIN: [1 2] TEST: [3 0]
TRAIN: [0 2] TEST: [1 3]
TRAIN: [0 2] TEST: [3 1]
.. automethod:: __init__

© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.StratifiedShuffleSplit.html