sklearn.datasets.load_digits(n_class=10, return_X_y=False)
[source]
Load and return the digits dataset (classification).
Each datapoint is a 8x8 image of a digit.
Classes | 10 |
Samples per class | ~180 |
Samples total | 1797 |
Dimensionality | 64 |
Features | integers 0-16 |
Read more in the User Guide.
Parameters: |
n_class : integer, between 0 and 10, optional (default=10) The number of classes to return. return_X_y : boolean, default=False. If True, returns New in version 0.18. |
---|---|
Returns: |
data : Bunch Dictionary-like object, the interesting attributes are: ‘data’, the data to learn, ‘images’, the images corresponding to each sample, ‘target’, the classification labels for each sample, ‘target_names’, the meaning of the labels, and ‘DESCR’, the full description of the dataset. (data, target) : tuple if New in version 0.18. This is a copy of the test set of the UCI ML hand-written digits datasets : http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits : |
To load the data and visualize the images:
>>> from sklearn.datasets import load_digits >>> digits = load_digits() >>> print(digits.data.shape) (1797, 64) >>> import matplotlib.pyplot as plt >>> plt.gray() >>> plt.matshow(digits.images[0]) >>> plt.show()
sklearn.datasets.load_digits
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html