sklearn.datasets.load_iris(return_X_y=False) [source]
Load and return the iris dataset (classification).
The iris dataset is a classic and very easy multi-class classification dataset.
| Classes | 3 |
| Samples per class | 50 |
| Samples total | 150 |
| Dimensionality | 4 |
| Features | real, positive |
Read more in the User Guide.
| Parameters: |
return_X_y : boolean, default=False. If True, returns New in version 0.18. |
|---|---|
| Returns: |
data : Bunch Dictionary-like object, the interesting attributes are: ‘data’, the data to learn, ‘target’, the classification labels, ‘target_names’, the meaning of the labels, ‘feature_names’, the meaning of the features, and ‘DESCR’, the full description of the dataset. (data, target) : tuple if New in version 0.18. |
Let’s say you are interested in the samples 10, 25, and 50, and want to know their class name.
>>> from sklearn.datasets import load_iris >>> data = load_iris() >>> data.target[[10, 25, 50]] array([0, 0, 1]) >>> list(data.target_names) ['setosa', 'versicolor', 'virginica']
sklearn.datasets.load_iris
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html