sklearn.datasets.make_friedman1(n_samples=100, n_features=10, noise=0.0, random_state=None)
[source]
Generate the “Friedman #1” regression problem
This dataset is described in Friedman [1] and Breiman [2].
Inputs X
are independent features uniformly distributed on the interval [0, 1]. The output y
is created according to the formula:
y(X) = 10 * sin(pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 + 10 * X[:, 3] + 5 * X[:, 4] + noise * N(0, 1).
Out of the n_features
features, only 5 are actually used to compute y
. The remaining features are independent of y
.
The number of features has to be >= 5.
Read more in the User Guide.
Parameters: |
n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=10) The number of features. Should be at least 5. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by |
---|---|
Returns: |
X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] The output values. |
[R140] | J. Friedman, “Multivariate adaptive regression splines”, The Annals of Statistics 19 (1), pages 1-67, 1991. |
[R141] | L. Breiman, “Bagging predictors”, Machine Learning 24, pages 123-140, 1996. |
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_friedman1.html