sklearn.datasets.make_hastie_10_2(n_samples=12000, random_state=None)
[source]
Generates data for binary classification used in Hastie et al. 2009, Example 10.2.
The ten features are standard independent Gaussian and the target y
is defined by:
y[i] = 1 if np.sum(X[i] ** 2) > 9.34 else -1
Read more in the User Guide.
Parameters: |
n_samples : int, optional (default=12000) The number of samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by |
---|---|
Returns: |
X : array of shape [n_samples, 10] The input samples. y : array of shape [n_samples] The output values. |
See also
make_gaussian_quantiles
[R147] | T. Hastie, R. Tibshirani and J. Friedman, “Elements of Statistical Learning Ed. 2”, Springer, 2009. |
sklearn.datasets.make_hastie_10_2
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_hastie_10_2.html