sklearn.datasets.make_regression(n_samples=100, n_features=100, n_informative=10, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None)
[source]
Generate a random regression problem.
The input set can either be well conditioned (by default) or have a low rank-fat tail singular profile. See make_low_rank_matrix
for more details.
The output is generated by applying a (potentially biased) random linear regression model with n_informative
nonzero regressors to the previously generated input and some gaussian centered noise with some adjustable scale.
Read more in the User Guide.
Parameters: |
n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=100) The number of features. n_informative : int, optional (default=10) The number of informative features, i.e., the number of features used to build the linear model used to generate the output. n_targets : int, optional (default=1) The number of regression targets, i.e., the dimension of the y output vector associated with a sample. By default, the output is a scalar. bias : float, optional (default=0.0) The bias term in the underlying linear model. effective_rank : int or None, optional (default=None)
tail_strength : float between 0.0 and 1.0, optional (default=0.5) The relative importance of the fat noisy tail of the singular values profile if noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. shuffle : boolean, optional (default=True) Shuffle the samples and the features. coef : boolean, optional (default=False) If True, the coefficients of the underlying linear model are returned. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by |
---|---|
Returns: |
X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] or [n_samples, n_targets] The output values. coef : array of shape [n_features] or [n_features, n_targets], optional The coefficient of the underlying linear model. It is returned only if coef is True. |
sklearn.datasets.make_regression
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html