sklearn.datasets.make_sparse_spd_matrix(dim=1, alpha=0.95, norm_diag=False, smallest_coef=0.1, largest_coef=0.9, random_state=None)
[source]
Generate a sparse symmetric definite positive matrix.
Read more in the User Guide.
Parameters: |
dim : integer, optional (default=1) The size of the random matrix to generate. alpha : float between 0 and 1, optional (default=0.95) The probability that a coefficient is zero (see notes). Larger values enforce more sparsity. norm_diag : boolean, optional (default=False) Whether to normalize the output matrix to make the leading diagonal elements all 1 smallest_coef : float between 0 and 1, optional (default=0.1) The value of the smallest coefficient. largest_coef : float between 0 and 1, optional (default=0.9) The value of the largest coefficient. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by |
---|---|
Returns: |
prec : sparse matrix of shape (dim, dim) The generated matrix. |
See also
The sparsity is actually imposed on the cholesky factor of the matrix. Thus alpha does not translate directly into the filling fraction of the matrix itself.
sklearn.datasets.make_sparse_spd_matrix
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_sparse_spd_matrix.html