class sklearn.decomposition.DictionaryLearning(n_components=None, alpha=1, max_iter=1000, tol=1e-08, fit_algorithm=’lars’, transform_algorithm=’omp’, transform_n_nonzero_coefs=None, transform_alpha=None, n_jobs=1, code_init=None, dict_init=None, verbose=False, split_sign=False, random_state=None)
[source]
Dictionary learning
Finds a dictionary (a set of atoms) that can best be used to represent data using a sparse code.
Solves the optimization problem:
(U^*,V^*) = argmin 0.5 || Y - U V ||_2^2 + alpha * || U ||_1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_components
Read more in the User Guide.
Parameters: |
n_components : int, number of dictionary elements to extract alpha : float, sparsity controlling parameter max_iter : int, maximum number of iterations to perform tol : float, tolerance for numerical error fit_algorithm : {‘lars’, ‘cd’} lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse. New in version 0.17: cd coordinate descent method to improve speed. transform_algorithm : {‘lasso_lars’, ‘lasso_cd’, ‘lars’, ‘omp’, ‘threshold’} Algorithm used to transform the data lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection New in version 0.17: lasso_cd coordinate descent method to improve speed. transform_n_nonzero_coefs : int, Number of nonzero coefficients to target in each column of the solution. This is only used by transform_alpha : float, 1. by default If n_jobs : int, number of parallel jobs to run code_init : array of shape (n_samples, n_components), initial value for the code, for warm restart dict_init : array of shape (n_components, n_features), initial values for the dictionary, for warm restart verbose : bool, optional (default: False) To control the verbosity of the procedure. split_sign : bool, False by default Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by |
---|---|
Attributes: |
components_ : array, [n_components, n_features] dictionary atoms extracted from the data error_ : array vector of errors at each iteration n_iter_ : int Number of iterations run. |
References:
J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning for sparse coding (http://www.di.ens.fr/sierra/pdfs/icml09.pdf)
fit (X[, y]) | Fit the model from data in X. |
fit_transform (X[, y]) | Fit to data, then transform it. |
get_params ([deep]) | Get parameters for this estimator. |
set_params (**params) | Set the parameters of this estimator. |
transform (X) | Encode the data as a sparse combination of the dictionary atoms. |
__init__(n_components=None, alpha=1, max_iter=1000, tol=1e-08, fit_algorithm=’lars’, transform_algorithm=’omp’, transform_n_nonzero_coefs=None, transform_alpha=None, n_jobs=1, code_init=None, dict_init=None, verbose=False, split_sign=False, random_state=None)
[source]
fit(X, y=None)
[source]
Fit the model from data in X.
Parameters: |
X : array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. y : Ignored. |
---|---|
Returns: |
self : object Returns the object itself |
fit_transform(X, y=None, **fit_params)
[source]
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: |
X : numpy array of shape [n_samples, n_features] Training set. y : numpy array of shape [n_samples] Target values. |
---|---|
Returns: |
X_new : numpy array of shape [n_samples, n_features_new] Transformed array. |
get_params(deep=True)
[source]
Get parameters for this estimator.
Parameters: |
deep : boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. |
---|---|
Returns: |
params : mapping of string to any Parameter names mapped to their values. |
set_params(**params)
[source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Returns: | self : |
---|
transform(X)
[source]
Encode the data as a sparse combination of the dictionary atoms.
Coding method is determined by the object parameter transform_algorithm
.
Parameters: |
X : array of shape (n_samples, n_features) Test data to be transformed, must have the same number of features as the data used to train the model. |
---|---|
Returns: |
X_new : array, shape (n_samples, n_components) Transformed data |
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.DictionaryLearning.html