class sklearn.decomposition.KernelPCA(n_components=None, kernel=’linear’, gamma=None, degree=3, coef0=1, kernel_params=None, alpha=1.0, fit_inverse_transform=False, eigen_solver=’auto’, tol=0, max_iter=None, remove_zero_eig=False, random_state=None, copy_X=True, n_jobs=1)
[source]
Kernel Principal component analysis (KPCA)
Non-linear dimensionality reduction through the use of kernels (see Pairwise metrics, Affinities and Kernels).
Read more in the User Guide.
Parameters: |
n_components : int, default=None Number of components. If None, all non-zero components are kept. kernel : “linear” | “poly” | “rbf” | “sigmoid” | “cosine” | “precomputed” Kernel. Default=”linear”. gamma : float, default=1/n_features Kernel coefficient for rbf, poly and sigmoid kernels. Ignored by other kernels. degree : int, default=3 Degree for poly kernels. Ignored by other kernels. coef0 : float, default=1 Independent term in poly and sigmoid kernels. Ignored by other kernels. kernel_params : mapping of string to any, default=None Parameters (keyword arguments) and values for kernel passed as callable object. Ignored by other kernels. alpha : int, default=1.0 Hyperparameter of the ridge regression that learns the inverse transform (when fit_inverse_transform=True). fit_inverse_transform : bool, default=False Learn the inverse transform for non-precomputed kernels. (i.e. learn to find the pre-image of a point) eigen_solver : string [‘auto’|’dense’|’arpack’], default=’auto’ Select eigensolver to use. If n_components is much less than the number of training samples, arpack may be more efficient than the dense eigensolver. tol : float, default=0 Convergence tolerance for arpack. If 0, optimal value will be chosen by arpack. max_iter : int, default=None Maximum number of iterations for arpack. If None, optimal value will be chosen by arpack. remove_zero_eig : boolean, default=False If True, then all components with zero eigenvalues are removed, so that the number of components in the output may be < n_components (and sometimes even zero due to numerical instability). When n_components is None, this parameter is ignored and components with zero eigenvalues are removed regardless. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by New in version 0.18. copy_X : boolean, default=True If True, input X is copied and stored by the model in the New in version 0.18. n_jobs : int, default=1 The number of parallel jobs to run. If New in version 0.18. |
---|---|
Attributes: |
lambdas_ : array, (n_components,) Eigenvalues of the centered kernel matrix in decreasing order. If alphas_ : array, (n_samples, n_components) Eigenvectors of the centered kernel matrix. If dual_coef_ : array, (n_samples, n_features) Inverse transform matrix. Set if X_transformed_fit_ : array, (n_samples, n_components) Projection of the fitted data on the kernel principal components. X_fit_ : (n_samples, n_features) The data used to fit the model. If |
fit (X[, y]) | Fit the model from data in X. |
fit_transform (X[, y]) | Fit the model from data in X and transform X. |
get_params ([deep]) | Get parameters for this estimator. |
inverse_transform (X) | Transform X back to original space. |
set_params (**params) | Set the parameters of this estimator. |
transform (X) | Transform X. |
__init__(n_components=None, kernel=’linear’, gamma=None, degree=3, coef0=1, kernel_params=None, alpha=1.0, fit_inverse_transform=False, eigen_solver=’auto’, tol=0, max_iter=None, remove_zero_eig=False, random_state=None, copy_X=True, n_jobs=1)
[source]
fit(X, y=None)
[source]
Fit the model from data in X.
Parameters: |
X : array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. |
---|---|
Returns: |
self : object Returns the instance itself. |
fit_transform(X, y=None, **params)
[source]
Fit the model from data in X and transform X.
Parameters: |
X : array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. |
---|---|
Returns: |
X_new : array-like, shape (n_samples, n_components) |
get_params(deep=True)
[source]
Get parameters for this estimator.
Parameters: |
deep : boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. |
---|---|
Returns: |
params : mapping of string to any Parameter names mapped to their values. |
inverse_transform(X)
[source]
Transform X back to original space.
Parameters: | X : array-like, shape (n_samples, n_components) |
---|---|
Returns: | X_new : array-like, shape (n_samples, n_features) |
“Learning to Find Pre-Images”, G BakIr et al, 2004.
set_params(**params)
[source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Returns: | self : |
---|
transform(X)
[source]
Transform X.
Parameters: | X : array-like, shape (n_samples, n_features) |
---|---|
Returns: | X_new : array-like, shape (n_samples, n_components) |
sklearn.decomposition.KernelPCA
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.KernelPCA.html