class sklearn.gaussian_process.kernels.ExpSineSquared(length_scale=1.0, periodicity=1.0, length_scale_bounds=(1e-05, 100000.0), periodicity_bounds=(1e-05, 100000.0))
[source]
Exp-Sine-Squared kernel.
The ExpSineSquared kernel allows modeling periodic functions. It is parameterized by a length-scale parameter length_scale>0 and a periodicity parameter periodicity>0. Only the isotropic variant where l is a scalar is supported at the moment. The kernel given by:
k(x_i, x_j) = exp(-2 (sin(pi / periodicity * d(x_i, x_j)) / length_scale) ^ 2)
New in version 0.18.
Parameters: |
length_scale : float > 0, default: 1.0 The length scale of the kernel. periodicity : float > 0, default: 1.0 The periodicity of the kernel. length_scale_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on length_scale periodicity_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on periodicity |
---|
clone_with_theta (theta) | Returns a clone of self with given hyperparameters theta. |
diag (X) | Returns the diagonal of the kernel k(X, X). |
get_params ([deep]) | Get parameters of this kernel. |
is_stationary () | Returns whether the kernel is stationary. |
set_params (**params) | Set the parameters of this kernel. |
__init__(length_scale=1.0, periodicity=1.0, length_scale_bounds=(1e-05, 100000.0), periodicity_bounds=(1e-05, 100000.0))
[source]
__call__(X, Y=None, eval_gradient=False)
[source]
Return the kernel k(X, Y) and optionally its gradient.
Parameters: |
X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. |
---|---|
Returns: |
K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. |
bounds
Returns the log-transformed bounds on the theta.
Returns: |
bounds : array, shape (n_dims, 2) The log-transformed bounds on the kernel’s hyperparameters theta |
---|
clone_with_theta(theta)
[source]
Returns a clone of self with given hyperparameters theta.
diag(X)
[source]
Returns the diagonal of the kernel k(X, X).
The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated.
Parameters: |
X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) |
---|---|
Returns: |
K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) |
get_params(deep=True)
[source]
Get parameters of this kernel.
Parameters: |
deep : boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. |
---|---|
Returns: |
params : mapping of string to any Parameter names mapped to their values. |
hyperparameters
Returns a list of all hyperparameter specifications.
is_stationary()
[source]
Returns whether the kernel is stationary.
n_dims
Returns the number of non-fixed hyperparameters of the kernel.
set_params(**params)
[source]
Set the parameters of this kernel.
The method works on simple kernels as well as on nested kernels. The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Returns: | self : |
---|
theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.
Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale.
Returns: |
theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel |
---|
sklearn.gaussian_process.kernels.ExpSineSquared
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.ExpSineSquared.html