Warning
DEPRECATED
class sklearn.grid_search.GridSearchCV(estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch=‘2*n_jobs’, error_score=’raise’)
[source]
Exhaustive search over specified parameter values for an estimator.
Deprecated since version 0.18: This module will be removed in 0.20. Use sklearn.model_selection.GridSearchCV
instead.
Important members are fit, predict.
GridSearchCV implements a “fit” and a “score” method. It also implements “predict”, “predict_proba”, “decision_function”, “transform” and “inverse_transform” if they are implemented in the estimator used.
The parameters of the estimator used to apply these methods are optimized by cross-validated grid-search over a parameter grid.
Read more in the User Guide.
Parameters: |
estimator : estimator object. A object of that type is instantiated for each grid point. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a param_grid : dict or list of dictionaries Dictionary with parameters names (string) as keys and lists of parameter settings to try as values, or a list of such dictionaries, in which case the grids spanned by each dictionary in the list are explored. This enables searching over any sequence of parameter settings. scoring : string, callable or None, default=None A string (see model evaluation documentation) or a scorer callable object / function with signature fit_params : dict, optional Parameters to pass to the fit method. n_jobs: int, default: 1 : : The maximum number of estimators fit in parallel.
Changed in version 0.17: Upgraded to joblib 0.9.3. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be:
iid : boolean, default=True If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are:
For integer/None inputs, if the estimator is a classifier and Refer User Guide for the various cross-validation strategies that can be used here. refit : boolean, default=True Refit the best estimator with the entire dataset. If “False”, it is impossible to make predictions using this GridSearchCV instance after fitting. verbose : integer Controls the verbosity: the higher, the more messages. error_score : ‘raise’ (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to ‘raise’, the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. |
---|---|
Attributes: |
grid_scores_ : list of named tuples Contains scores for all parameter combinations in param_grid. Each entry corresponds to one parameter setting. Each named tuple has the attributes:
best_estimator_ : estimator Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False. best_score_ : float Score of best_estimator on the left out data. best_params_ : dict Parameter setting that gave the best results on the hold out data. scorer_ : function Scorer function used on the held out data to choose the best parameters for the model. |
See also
ParameterGrid
sklearn.cross_validation.train_test_split
sklearn.metrics.make_scorer
The parameters selected are those that maximize the score of the left out data, unless an explicit score is passed in which case it is used instead.
If n_jobs
was set to a value higher than one, the data is copied for each point in the grid (and not n_jobs
times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is large and not enough memory is available. A workaround in this case is to set pre_dispatch
. Then, the memory is copied only pre_dispatch
many times. A reasonable value for pre_dispatch
is 2 * n_jobs
.
>>> from sklearn import svm, grid_search, datasets >>> iris = datasets.load_iris() >>> parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]} >>> svr = svm.SVC() >>> clf = grid_search.GridSearchCV(svr, parameters) >>> clf.fit(iris.data, iris.target) ... GridSearchCV(cv=None, error_score=..., estimator=SVC(C=1.0, cache_size=..., class_weight=..., coef0=..., decision_function_shape='ovr', degree=..., gamma=..., kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=..., verbose=False), fit_params={}, iid=..., n_jobs=1, param_grid=..., pre_dispatch=..., refit=..., scoring=..., verbose=...)
decision_function (X) | Call decision_function on the estimator with the best found parameters. |
fit (X[, y]) | Run fit with all sets of parameters. |
get_params ([deep]) | Get parameters for this estimator. |
inverse_transform (Xt) | Call inverse_transform on the estimator with the best found parameters. |
predict (X) | Call predict on the estimator with the best found parameters. |
predict_log_proba (X) | Call predict_log_proba on the estimator with the best found parameters. |
predict_proba (X) | Call predict_proba on the estimator with the best found parameters. |
score (X[, y]) | Returns the score on the given data, if the estimator has been refit. |
set_params (**params) | Set the parameters of this estimator. |
transform (X) | Call transform on the estimator with the best found parameters. |
__init__(estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch=‘2*n_jobs’, error_score=’raise’)
[source]
decision_function(X)
[source]
Call decision_function on the estimator with the best found parameters.
Only available if refit=True
and the underlying estimator supports decision_function
.
Parameters: |
X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. |
---|
fit(X, y=None)
[source]
Run fit with all sets of parameters.
Parameters: |
X : array-like, shape = [n_samples, n_features] Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. |
---|
get_params(deep=True)
[source]
Get parameters for this estimator.
Parameters: |
deep : boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. |
---|---|
Returns: |
params : mapping of string to any Parameter names mapped to their values. |
inverse_transform(Xt)
[source]
Call inverse_transform on the estimator with the best found parameters.
Only available if the underlying estimator implements inverse_transform
and refit=True
.
Parameters: |
Xt : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. |
---|
predict(X)
[source]
Call predict on the estimator with the best found parameters.
Only available if refit=True
and the underlying estimator supports predict
.
Parameters: |
X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. |
---|
predict_log_proba(X)
[source]
Call predict_log_proba on the estimator with the best found parameters.
Only available if refit=True
and the underlying estimator supports predict_log_proba
.
Parameters: |
X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. |
---|
predict_proba(X)
[source]
Call predict_proba on the estimator with the best found parameters.
Only available if refit=True
and the underlying estimator supports predict_proba
.
Parameters: |
X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. |
---|
score(X, y=None)
[source]
Returns the score on the given data, if the estimator has been refit.
This uses the score defined by scoring
where provided, and the best_estimator_.score
method otherwise.
Parameters: |
X : array-like, shape = [n_samples, n_features] Input data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. |
---|---|
Returns: |
score : float |
estimator.score
if the scoring
parameter was set when fitting.set_params(**params)
[source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Returns: | self : |
---|
transform(X)
[source]
Call transform on the estimator with the best found parameters.
Only available if the underlying estimator supports transform
and refit=True
.
Parameters: |
X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. |
---|
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.grid_search.GridSearchCV.html