sklearn.isotonic.isotonic_regression(y, sample_weight=None, y_min=None, y_max=None, increasing=True)
[source]
Solve the isotonic regression model:
min sum w[i] (y[i] - y_[i]) ** 2 subject to y_min = y_[1] <= y_[2] ... <= y_[n] = y_max
Read more in the User Guide.
Parameters: |
y : iterable of floating-point values The data. sample_weight : iterable of floating-point values, optional, default: None Weights on each point of the regression. If None, weight is set to 1 (equal weights). y_min : optional, default: None If not None, set the lowest value of the fit to y_min. y_max : optional, default: None If not None, set the highest value of the fit to y_max. increasing : boolean, optional, default: True Whether to compute |
---|---|
Returns: |
y_ : list of floating-point values Isotonic fit of y. |
“Active set algorithms for isotonic regression; A unifying framework” by Michael J. Best and Nilotpal Chakravarti, section 3.
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.isotonic.isotonic_regression.html