class sklearn.linear_model.LassoLarsIC(criterion=’aic’, fit_intercept=True, verbose=False, normalize=True, precompute=’auto’, max_iter=500, eps=2.2204460492503131e-16, copy_X=True, positive=False) [source]
Lasso model fit with Lars using BIC or AIC for model selection
The optimization objective for Lasso is:
(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
AIC is the Akaike information criterion and BIC is the Bayes Information criterion. Such criteria are useful to select the value of the regularization parameter by making a trade-off between the goodness of fit and the complexity of the model. A good model should explain well the data while being simple.
Read more in the User Guide.
| Parameters: |
criterion : ‘bic’ | ‘aic’ The type of criterion to use. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default True This parameter is ignored when precompute : True | False | ‘auto’ | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to max_iter : integer, optional Maximum number of iterations to perform. Can be used for early stopping. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. Under the positive restriction the model coefficients do not converge to the ordinary-least-squares solution for small values of alpha. Only coefficients up to the smallest alpha value ( |
|---|---|
| Attributes: |
coef_ : array, shape (n_features,) parameter vector (w in the formulation formula) intercept_ : float independent term in decision function. alpha_ : float the alpha parameter chosen by the information criterion n_iter_ : int number of iterations run by lars_path to find the grid of alphas. criterion_ : array, shape (n_alphas,) The value of the information criteria (‘aic’, ‘bic’) across all alphas. The alpha which has the smallest information criterion is chosen. This value is larger by a factor of |
See also
The estimation of the number of degrees of freedom is given by:
“On the degrees of freedom of the lasso” Hui Zou, Trevor Hastie, and Robert Tibshirani Ann. Statist. Volume 35, Number 5 (2007), 2173-2192.
https://en.wikipedia.org/wiki/Akaike_information_criterion https://en.wikipedia.org/wiki/Bayesian_information_criterion
>>> from sklearn import linear_model
>>> reg = linear_model.LassoLarsIC(criterion='bic')
>>> reg.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111])
...
LassoLarsIC(copy_X=True, criterion='bic', eps=..., fit_intercept=True,
max_iter=500, normalize=True, positive=False, precompute='auto',
verbose=False)
>>> print(reg.coef_)
[ 0. -1.11...]
fit(X, y[, copy_X]) | Fit the model using X, y as training data. |
get_params([deep]) | Get parameters for this estimator. |
predict(X) | Predict using the linear model |
score(X, y[, sample_weight]) | Returns the coefficient of determination R^2 of the prediction. |
set_params(**params) | Set the parameters of this estimator. |
__init__(criterion=’aic’, fit_intercept=True, verbose=False, normalize=True, precompute=’auto’, max_iter=500, eps=2.2204460492503131e-16, copy_X=True, positive=False) [source]
fit(X, y, copy_X=True) [source]
Fit the model using X, y as training data.
| Parameters: |
X : array-like, shape (n_samples, n_features) training data. y : array-like, shape (n_samples,) target values. Will be cast to X’s dtype if necessary copy_X : boolean, optional, default True If |
|---|---|
| Returns: |
self : object returns an instance of self. |
get_params(deep=True) [source]
Get parameters for this estimator.
| Parameters: |
deep : boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. |
|---|---|
| Returns: |
params : mapping of string to any Parameter names mapped to their values. |
predict(X) [source]
Predict using the linear model
| Parameters: |
X : {array-like, sparse matrix}, shape = (n_samples, n_features) Samples. |
|---|---|
| Returns: |
C : array, shape = (n_samples,) Returns predicted values. |
score(X, y, sample_weight=None) [source]
Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.
| Parameters: |
X : array-like, shape = (n_samples, n_features) Test samples. y : array-like, shape = (n_samples) or (n_samples, n_outputs) True values for X. sample_weight : array-like, shape = [n_samples], optional Sample weights. |
|---|---|
| Returns: |
score : float R^2 of self.predict(X) wrt. y. |
set_params(**params) [source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
| Returns: | self : |
|---|
sklearn.linear_model.LassoLarsIC
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLarsIC.html