class sklearn.linear_model.PassiveAggressiveRegressor(C=1.0, fit_intercept=True, max_iter=None, tol=None, shuffle=True, verbose=0, loss=’epsilon_insensitive’, epsilon=0.1, random_state=None, warm_start=False, average=False, n_iter=None)
[source]
Passive Aggressive Regressor
Read more in the User Guide.
Parameters: |
C : float Maximum step size (regularization). Defaults to 1.0. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. max_iter : int, optional The maximum number of passes over the training data (aka epochs). It only impacts the behavior in the New in version 0.19. tol : float or None, optional The stopping criterion. If it is not None, the iterations will stop when (loss > previous_loss - tol). Defaults to None. Defaults to 1e-3 from 0.21. New in version 0.19. shuffle : bool, default=True Whether or not the training data should be shuffled after each epoch. verbose : integer, optional The verbosity level loss : string, optional The loss function to be used: epsilon_insensitive: equivalent to PA-I in the reference paper. squared_epsilon_insensitive: equivalent to PA-II in the reference paper. epsilon : float If the difference between the current prediction and the correct label is below this threshold, the model is not updated. random_state : int, RandomState instance or None, optional, default=None The seed of the pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. average : bool or int, optional When set to True, computes the averaged SGD weights and stores the result in the New in version 0.19: parameter average to use weights averaging in SGD n_iter : int, optional The number of passes over the training data (aka epochs). Defaults to None. Deprecated, will be removed in 0.21. Changed in version 0.19: Deprecated |
---|---|
Attributes: |
coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes, n_features] Weights assigned to the features. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. n_iter_ : int The actual number of iterations to reach the stopping criterion. |
See also
Online Passive-Aggressive Algorithms <http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf> K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006)
>>> from sklearn.linear_model import PassiveAggressiveRegressor >>> from sklearn.datasets import make_regression >>> >>> X, y = make_regression(n_features=4, random_state=0) >>> regr = PassiveAggressiveRegressor(random_state=0) >>> regr.fit(X, y) PassiveAggressiveRegressor(C=1.0, average=False, epsilon=0.1, fit_intercept=True, loss='epsilon_insensitive', max_iter=None, n_iter=None, random_state=0, shuffle=True, tol=None, verbose=0, warm_start=False) >>> print(regr.coef_) [ 20.48736655 34.18818427 67.59122734 87.94731329] >>> print(regr.intercept_) [-0.02306214] >>> print(regr.predict([[0, 0, 0, 0]])) [-0.02306214]
densify () | Convert coefficient matrix to dense array format. |
fit (X, y[, coef_init, intercept_init]) | Fit linear model with Passive Aggressive algorithm. |
get_params ([deep]) | Get parameters for this estimator. |
partial_fit (X, y) | Fit linear model with Passive Aggressive algorithm. |
predict (X) | Predict using the linear model |
score (X, y[, sample_weight]) | Returns the coefficient of determination R^2 of the prediction. |
set_params (*args, **kwargs) | |
sparsify () | Convert coefficient matrix to sparse format. |
__init__(C=1.0, fit_intercept=True, max_iter=None, tol=None, shuffle=True, verbose=0, loss=’epsilon_insensitive’, epsilon=0.1, random_state=None, warm_start=False, average=False, n_iter=None)
[source]
densify()
[source]
Convert coefficient matrix to dense array format.
Converts the coef_
member (back) to a numpy.ndarray. This is the default format of coef_
and is required for fitting, so calling this method is only required on models that have previously been sparsified; otherwise, it is a no-op.
Returns: | self : estimator |
---|
fit(X, y, coef_init=None, intercept_init=None)
[source]
Fit linear model with Passive Aggressive algorithm.
Parameters: |
X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : numpy array of shape [n_samples] Target values coef_init : array, shape = [n_features] The initial coefficients to warm-start the optimization. intercept_init : array, shape = [1] The initial intercept to warm-start the optimization. |
---|---|
Returns: |
self : returns an instance of self. |
get_params(deep=True)
[source]
Get parameters for this estimator.
Parameters: |
deep : boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. |
---|---|
Returns: |
params : mapping of string to any Parameter names mapped to their values. |
partial_fit(X, y)
[source]
Fit linear model with Passive Aggressive algorithm.
Parameters: |
X : {array-like, sparse matrix}, shape = [n_samples, n_features] Subset of training data y : numpy array of shape [n_samples] Subset of target values |
---|---|
Returns: |
self : returns an instance of self. |
predict(X)
[source]
Predict using the linear model
Parameters: |
X : {array-like, sparse matrix}, shape (n_samples, n_features) |
---|---|
Returns: |
array, shape (n_samples,) : Predicted target values per element in X. |
score(X, y, sample_weight=None)
[source]
Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.
Parameters: |
X : array-like, shape = (n_samples, n_features) Test samples. y : array-like, shape = (n_samples) or (n_samples, n_outputs) True values for X. sample_weight : array-like, shape = [n_samples], optional Sample weights. |
---|---|
Returns: |
score : float R^2 of self.predict(X) wrt. y. |
sparsify()
[source]
Convert coefficient matrix to sparse format.
Converts the coef_
member to a scipy.sparse matrix, which for L1-regularized models can be much more memory- and storage-efficient than the usual numpy.ndarray representation.
The intercept_
member is not converted.
Returns: | self : estimator |
---|
For non-sparse models, i.e. when there are not many zeros in coef_
, this may actually increase memory usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be computed with (coef_ == 0).sum()
, must be more than 50% for this to provide significant benefits.
After calling this method, further fitting with the partial_fit method (if any) will not work until you call densify.
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.PassiveAggressiveRegressor.html