class sklearn.linear_model.RidgeClassifier(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001, class_weight=None, solver=’auto’, random_state=None)
[source]
Classifier using Ridge regression.
Read more in the User Guide.
Parameters: |
alpha : float Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False This parameter is ignored when copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. max_iter : int, optional Maximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg. tol : float Precision of the solution. class_weight : dict or ‘balanced’, optional Weights associated with classes in the form The “balanced” mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as solver : {‘auto’, ‘svd’, ‘cholesky’, ‘lsqr’, ‘sparse_cg’, ‘sag’, ‘saga’} Solver to use in the computational routines:
random_state : int, RandomState instance or None, optional, default None The seed of the pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by |
---|---|
Attributes: |
coef_ : array, shape (n_features,) or (n_classes, n_features) Weight vector(s). intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if n_iter_ : array or None, shape (n_targets,) Actual number of iterations for each target. Available only for sag and lsqr solvers. Other solvers will return None. |
See also
For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge.
decision_function (X) | Predict confidence scores for samples. |
fit (X, y[, sample_weight]) | Fit Ridge regression model. |
get_params ([deep]) | Get parameters for this estimator. |
predict (X) | Predict class labels for samples in X. |
score (X, y[, sample_weight]) | Returns the mean accuracy on the given test data and labels. |
set_params (**params) | Set the parameters of this estimator. |
__init__(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001, class_weight=None, solver=’auto’, random_state=None)
[source]
decision_function(X)
[source]
Predict confidence scores for samples.
The confidence score for a sample is the signed distance of that sample to the hyperplane.
Parameters: |
X : {array-like, sparse matrix}, shape = (n_samples, n_features) Samples. |
---|---|
Returns: |
array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) : Confidence scores per (sample, class) combination. In the binary case, confidence score for self.classes_[1] where >0 means this class would be predicted. |
fit(X, y, sample_weight=None)
[source]
Fit Ridge regression model.
Parameters: |
X : {array-like, sparse matrix}, shape = [n_samples,n_features] Training data y : array-like, shape = [n_samples] Target values sample_weight : float or numpy array of shape (n_samples,) Sample weight. New in version 0.17: sample_weight support to Classifier. |
---|---|
Returns: |
self : returns an instance of self. |
get_params(deep=True)
[source]
Get parameters for this estimator.
Parameters: |
deep : boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. |
---|---|
Returns: |
params : mapping of string to any Parameter names mapped to their values. |
predict(X)
[source]
Predict class labels for samples in X.
Parameters: |
X : {array-like, sparse matrix}, shape = [n_samples, n_features] Samples. |
---|---|
Returns: |
C : array, shape = [n_samples] Predicted class label per sample. |
score(X, y, sample_weight=None)
[source]
Returns the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
Parameters: |
X : array-like, shape = (n_samples, n_features) Test samples. y : array-like, shape = (n_samples) or (n_samples, n_outputs) True labels for X. sample_weight : array-like, shape = [n_samples], optional Sample weights. |
---|---|
Returns: |
score : float Mean accuracy of self.predict(X) wrt. y. |
set_params(**params)
[source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Returns: | self : |
---|
sklearn.linear_model.RidgeClassifier
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html