class sklearn.linear_model.RidgeClassifierCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, class_weight=None)
[source]
Ridge classifier with built-in cross-validation.
By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Currently, only the n_features > n_samples case is handled efficiently.
Read more in the User Guide.
Parameters: |
alphas : numpy array of shape [n_alphas] Array of alpha values to try. Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False This parameter is ignored when scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are:
Refer User Guide for the various cross-validation strategies that can be used here. class_weight : dict or ‘balanced’, optional Weights associated with classes in the form The “balanced” mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as |
---|---|
Attributes: |
cv_values_ : array, shape = [n_samples, n_alphas] or shape = [n_samples, n_responses, n_alphas], optional Cross-validation values for each alpha (if `cv=None`). After `fit()` has been called, this attribute will contain the mean squared errors (by default) or the values of the `{loss,score}_func` function (if provided in the constructor). : coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if alpha_ : float Estimated regularization parameter |
See also
Ridge
RidgeClassifier
RidgeCV
For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge.
decision_function (X) | Predict confidence scores for samples. |
fit (X, y[, sample_weight]) | Fit the ridge classifier. |
get_params ([deep]) | Get parameters for this estimator. |
predict (X) | Predict class labels for samples in X. |
score (X, y[, sample_weight]) | Returns the mean accuracy on the given test data and labels. |
set_params (**params) | Set the parameters of this estimator. |
__init__(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, class_weight=None)
[source]
decision_function(X)
[source]
Predict confidence scores for samples.
The confidence score for a sample is the signed distance of that sample to the hyperplane.
Parameters: |
X : {array-like, sparse matrix}, shape = (n_samples, n_features) Samples. |
---|---|
Returns: |
array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) : Confidence scores per (sample, class) combination. In the binary case, confidence score for self.classes_[1] where >0 means this class would be predicted. |
fit(X, y, sample_weight=None)
[source]
Fit the ridge classifier.
Parameters: |
X : array-like, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target values. Will be cast to X’s dtype if necessary sample_weight : float or numpy array of shape (n_samples,) Sample weight. |
---|---|
Returns: |
self : object Returns self. |
get_params(deep=True)
[source]
Get parameters for this estimator.
Parameters: |
deep : boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. |
---|---|
Returns: |
params : mapping of string to any Parameter names mapped to their values. |
predict(X)
[source]
Predict class labels for samples in X.
Parameters: |
X : {array-like, sparse matrix}, shape = [n_samples, n_features] Samples. |
---|---|
Returns: |
C : array, shape = [n_samples] Predicted class label per sample. |
score(X, y, sample_weight=None)
[source]
Returns the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
Parameters: |
X : array-like, shape = (n_samples, n_features) Test samples. y : array-like, shape = (n_samples) or (n_samples, n_outputs) True labels for X. sample_weight : array-like, shape = [n_samples], optional Sample weights. |
---|---|
Returns: |
score : float Mean accuracy of self.predict(X) wrt. y. |
set_params(**params)
[source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Returns: | self : |
---|
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifierCV.html