class sklearn.manifold.LocallyLinearEmbedding(n_neighbors=5, n_components=2, reg=0.001, eigen_solver=’auto’, tol=1e-06, max_iter=100, method=’standard’, hessian_tol=0.0001, modified_tol=1e-12, neighbors_algorithm=’auto’, random_state=None, n_jobs=1)
[source]
Locally Linear Embedding
Read more in the User Guide.
Parameters: |
n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold reg : float regularization constant, multiplies the trace of the local covariance matrix of the distances. eigen_solver : string, {‘auto’, ‘arpack’, ‘dense’} auto : algorithm will attempt to choose the best method for input data
tol : float, optional Tolerance for ‘arpack’ method Not used if eigen_solver==’dense’. max_iter : integer maximum number of iterations for the arpack solver. Not used if eigen_solver==’dense’. method : string (‘standard’, ‘hessian’, ‘modified’ or ‘ltsa’)
hessian_tol : float, optional Tolerance for Hessian eigenmapping method. Only used if modified_tol : float, optional Tolerance for modified LLE method. Only used if neighbors_algorithm : string [‘auto’|’brute’|’kd_tree’|’ball_tree’] algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors instance random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by n_jobs : int, optional (default = 1) The number of parallel jobs to run. If |
---|---|
Attributes: |
embedding_vectors_ : array-like, shape [n_components, n_samples] Stores the embedding vectors reconstruction_error_ : float Reconstruction error associated with nbrs_ : NearestNeighbors object Stores nearest neighbors instance, including BallTree or KDtree if applicable. |
[R189] | Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323 (2000). |
[R190] | Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci U S A. 100:5591 (2003). |
[R191] |
Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
|
[R192] | Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Journal of Shanghai Univ. 8:406 (2004) |
fit (X[, y]) | Compute the embedding vectors for data X |
fit_transform (X[, y]) | Compute the embedding vectors for data X and transform X. |
get_params ([deep]) | Get parameters for this estimator. |
set_params (**params) | Set the parameters of this estimator. |
transform (X) | Transform new points into embedding space. |
__init__(n_neighbors=5, n_components=2, reg=0.001, eigen_solver=’auto’, tol=1e-06, max_iter=100, method=’standard’, hessian_tol=0.0001, modified_tol=1e-12, neighbors_algorithm=’auto’, random_state=None, n_jobs=1)
[source]
fit(X, y=None)
[source]
Compute the embedding vectors for data X
Parameters: |
X : array-like of shape [n_samples, n_features] training set. y: Ignored. : |
---|---|
Returns: |
self : returns an instance of self. |
fit_transform(X, y=None)
[source]
Compute the embedding vectors for data X and transform X.
Parameters: |
X : array-like of shape [n_samples, n_features] training set. y: Ignored. : |
---|---|
Returns: |
X_new : array-like, shape (n_samples, n_components) |
get_params(deep=True)
[source]
Get parameters for this estimator.
Parameters: |
deep : boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. |
---|---|
Returns: |
params : mapping of string to any Parameter names mapped to their values. |
set_params(**params)
[source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Returns: | self : |
---|
transform(X)
[source]
Transform new points into embedding space.
Parameters: | X : array-like, shape = [n_samples, n_features] |
---|---|
Returns: | X_new : array, shape = [n_samples, n_components] |
Because of scaling performed by this method, it is discouraged to use it together with methods that are not scale-invariant (like SVMs)
sklearn.manifold.LocallyLinearEmbedding
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.manifold.LocallyLinearEmbedding.html