sklearn.metrics.explained_variance_score(y_true, y_pred, sample_weight=None, multioutput=’uniform_average’)
[source]
Explained variance regression score function
Best possible score is 1.0, lower values are worse.
Read more in the User Guide.
Parameters: |
y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in [‘raw_values’, ‘uniform_average’, ‘variance_weighted’] or array-like of shape (n_outputs) Defines aggregating of multiple output scores. Array-like value defines weights used to average scores.
|
---|---|
Returns: |
score : float or ndarray of floats The explained variance or ndarray if ‘multioutput’ is ‘raw_values’. |
This is not a symmetric function.
>>> from sklearn.metrics import explained_variance_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> explained_variance_score(y_true, y_pred) 0.957... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> explained_variance_score(y_true, y_pred, multioutput='uniform_average') ... 0.983...
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.explained_variance_score.html