sklearn.metrics.mean_squared_log_error(y_true, y_pred, sample_weight=None, multioutput=’uniform_average’)
[source]
Mean squared logarithmic error regression loss
Read more in the User Guide.
Parameters: |
y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in [‘raw_values’, ‘uniform_average’] or array-like of shape = (n_outputs) Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
|
---|---|
Returns: |
loss : float or ndarray of floats A non-negative floating point value (the best value is 0.0), or an array of floating point values, one for each individual target. |
>>> from sklearn.metrics import mean_squared_log_error >>> y_true = [3, 5, 2.5, 7] >>> y_pred = [2.5, 5, 4, 8] >>> mean_squared_log_error(y_true, y_pred) 0.039... >>> y_true = [[0.5, 1], [1, 2], [7, 6]] >>> y_pred = [[0.5, 2], [1, 2.5], [8, 8]] >>> mean_squared_log_error(y_true, y_pred) 0.044... >>> mean_squared_log_error(y_true, y_pred, multioutput='raw_values') ... array([ 0.004..., 0.083...]) >>> mean_squared_log_error(y_true, y_pred, multioutput=[0.3, 0.7]) ... 0.060...
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_log_error.html