sklearn.metrics.pairwise.cosine_similarity(X, Y=None, dense_output=True)
[source]
Compute cosine similarity between samples in X and Y.
Cosine similarity, or the cosine kernel, computes similarity as the normalized dot product of X and Y:
K(X, Y) = <X, Y> / (||X||*||Y||)On L2-normalized data, this function is equivalent to linear_kernel.
Read more in the User Guide.
Parameters: |
X : ndarray or sparse array, shape: (n_samples_X, n_features) Input data. Y : ndarray or sparse array, shape: (n_samples_Y, n_features) Input data. If dense_output : boolean (optional), default True Whether to return dense output even when the input is sparse. If New in version 0.17: parameter |
---|---|
Returns: |
kernel matrix : array An array with shape (n_samples_X, n_samples_Y). |
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html