sklearn.metrics.zero_one_loss(y_true, y_pred, normalize=True, sample_weight=None)
[source]
Zero-one classification loss.
If normalize is True
, return the fraction of misclassifications (float), else it returns the number of misclassifications (int). The best performance is 0.
Read more in the User Guide.
Parameters: |
y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) labels. y_pred : 1d array-like, or label indicator array / sparse matrix Predicted labels, as returned by a classifier. normalize : bool, optional (default=True) If sample_weight : array-like of shape = [n_samples], optional Sample weights. |
---|---|
Returns: |
loss : float or int, If |
See also
In multilabel classification, the zero_one_loss function corresponds to the subset zero-one loss: for each sample, the entire set of labels must be correctly predicted, otherwise the loss for that sample is equal to one.
>>> from sklearn.metrics import zero_one_loss >>> y_pred = [1, 2, 3, 4] >>> y_true = [2, 2, 3, 4] >>> zero_one_loss(y_true, y_pred) 0.25 >>> zero_one_loss(y_true, y_pred, normalize=False) 1
In the multilabel case with binary label indicators:
>>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2))) 0.5
sklearn.metrics.zero_one_loss
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.zero_one_loss.html