sklearn.model_selection.check_cv(cv=3, y=None, classifier=False)
[source]
Input checker utility for building a cross-validator
Parameters: |
cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are:
For integer/None inputs, if classifier is True and Refer User Guide for the various cross-validation strategies that can be used here. y : array-like, optional The target variable for supervised learning problems. classifier : boolean, optional, default False Whether the task is a classification task, in which case stratified KFold will be used. |
---|---|
Returns: |
checked_cv : a cross-validator instance. The return value is a cross-validator which generates the train/test splits via the |
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.check_cv.html