sklearn.model_selection.cross_val_score(estimator, X, y=None, groups=None, scoring=None, cv=None, n_jobs=1, verbose=0, fit_params=None, pre_dispatch=‘2*n_jobs’)
[source]
Evaluate a score by cross-validation
Read more in the User Guide.
Parameters: |
estimator : estimator object implementing ‘fit’ The object to use to fit the data. X : array-like The data to fit. Can be for example a list, or an array. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are:
For integer/None inputs, if the estimator is a classifier and Refer User Guide for the various cross-validation strategies that can be used here. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means ‘all CPUs’. verbose : integer, optional The verbosity level. fit_params : dict, optional Parameters to pass to the fit method of the estimator. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be:
|
---|---|
Returns: |
scores : array of float, shape=(len(list(cv)),) Array of scores of the estimator for each run of the cross validation. |
See also
sklearn.model_selection.cross_validate
sklearn.metrics.make_scorer
>>> from sklearn import datasets, linear_model >>> from sklearn.model_selection import cross_val_score >>> diabetes = datasets.load_diabetes() >>> X = diabetes.data[:150] >>> y = diabetes.target[:150] >>> lasso = linear_model.Lasso() >>> print(cross_val_score(lasso, X, y)) [ 0.33150734 0.08022311 0.03531764]
sklearn.model_selection.cross_val_score
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html