class sklearn.multioutput.MultiOutputClassifier(estimator, n_jobs=1)
[source]
Multi target classification
This strategy consists of fitting one classifier per target. This is a simple strategy for extending classifiers that do not natively support multi-target classification
Parameters: |
estimator : estimator object An estimator object implementing n_jobs : int, optional, default=1 The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. The number of jobs to use for the computation. It does each target variable in y in parallel. |
---|---|
Attributes: |
estimators_ : list of Estimators used for predictions. |
fit (X, y[, sample_weight]) | Fit the model to data. |
get_params ([deep]) | Get parameters for this estimator. |
partial_fit (X, y[, classes, sample_weight]) | Incrementally fit the model to data. |
predict (X) | Predict multi-output variable using a model trained for each target variable. |
predict_proba (X) | Probability estimates. |
score (X, y) | “Returns the mean accuracy on the given test data and labels. |
set_params (**params) | Set the parameters of this estimator. |
__init__(estimator, n_jobs=1)
[source]
fit(X, y, sample_weight=None)
[source]
Fit the model to data. Fit a separate model for each output variable.
Parameters: |
X : (sparse) array-like, shape (n_samples, n_features) Data. y : (sparse) array-like, shape (n_samples, n_outputs) Multi-output targets. An indicator matrix turns on multilabel estimation. sample_weight : array-like, shape = (n_samples) or None Sample weights. If None, then samples are equally weighted. Only supported if the underlying regressor supports sample weights. |
---|---|
Returns: |
self : object Returns self. |
get_params(deep=True)
[source]
Get parameters for this estimator.
Parameters: |
deep : boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. |
---|---|
Returns: |
params : mapping of string to any Parameter names mapped to their values. |
partial_fit(X, y, classes=None, sample_weight=None)
[source]
Incrementally fit the model to data. Fit a separate model for each output variable.
Parameters: |
X : (sparse) array-like, shape (n_samples, n_features) Data. y : (sparse) array-like, shape (n_samples, n_outputs) Multi-output targets. classes : list of numpy arrays, shape (n_outputs) Each array is unique classes for one output in str/int Can be obtained by via sample_weight : array-like, shape = (n_samples) or None Sample weights. If None, then samples are equally weighted. Only supported if the underlying regressor supports sample weights. |
---|---|
Returns: |
self : object Returns self. |
predict(X)
[source]
Parameters: |
X : (sparse) array-like, shape (n_samples, n_features) Data. |
---|---|
Returns: |
y : (sparse) array-like, shape (n_samples, n_outputs) Multi-output targets predicted across multiple predictors. Note: Separate models are generated for each predictor. |
predict_proba(X)
[source]
Probability estimates. Returns prediction probabilities for each class of each output.
Parameters: |
X : array-like, shape (n_samples, n_features) Data |
---|---|
Returns: |
p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute |
score(X, y)
[source]
“Returns the mean accuracy on the given test data and labels.
Parameters: |
X : array-like, shape [n_samples, n_features] Test samples y : array-like, shape [n_samples, n_outputs] True values for X |
---|---|
Returns: |
scores : float accuracy_score of self.predict(X) versus y |
set_params(**params)
[source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Returns: | self : |
---|
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputClassifier.html