class sklearn.neighbors.LocalOutlierFactor(n_neighbors=20, algorithm=’auto’, leaf_size=30, metric=’minkowski’, p=2, metric_params=None, contamination=0.1, n_jobs=1)
[source]
Unsupervised Outlier Detection using Local Outlier Factor (LOF)
The anomaly score of each sample is called Local Outlier Factor. It measures the local deviation of density of a given sample with respect to its neighbors. It is local in that the anomaly score depends on how isolated the object is with respect to the surrounding neighborhood. More precisely, locality is given by k-nearest neighbors, whose distance is used to estimate the local density. By comparing the local density of a sample to the local densities of its neighbors, one can identify samples that have a substantially lower density than their neighbors. These are considered outliers.
Parameters: |
n_neighbors : int, optional (default=20) Number of neighbors to use by default for algorithm : {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional Algorithm used to compute the nearest neighbors:
Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default=30) Leaf size passed to metric : string or callable, default ‘minkowski’ metric used for the distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If ‘precomputed’, the training input X is expected to be a distance matrix. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy’s metrics, but is less efficient than passing the metric name as a string. Valid values for metric are:
See the documentation for scipy.spatial.distance for details on these metrics: http://docs.scipy.org/doc/scipy/reference/spatial.distance.html p : integer, optional (default=2) Parameter for the Minkowski metric from metric_params : dict, optional (default=None) Additional keyword arguments for the metric function. contamination : float in (0., 0.5), optional (default=0.1) The amount of contamination of the data set, i.e. the proportion of outliers in the data set. When fitting this is used to define the threshold on the decision function. n_jobs : int, optional (default=1) The number of parallel jobs to run for neighbors search. If |
---|---|
Attributes: |
negative_outlier_factor_ : numpy array, shape (n_samples,) The opposite LOF of the training samples. The lower, the more abnormal. Inliers tend to have a LOF score close to 1, while outliers tend to have a larger LOF score. The local outlier factor (LOF) of a sample captures its supposed ‘degree of abnormality’. It is the average of the ratio of the local reachability density of a sample and those of its k-nearest neighbors. n_neighbors_ : integer The actual number of neighbors used for |
[R243] | Breunig, M. M., Kriegel, H. P., Ng, R. T., & Sander, J. (2000, May). LOF: identifying density-based local outliers. In ACM sigmod record. |
fit (X[, y]) | Fit the model using X as training data. |
fit_predict (X[, y]) | “Fits the model to the training set X and returns the labels |
get_params ([deep]) | Get parameters for this estimator. |
kneighbors ([X, n_neighbors, return_distance]) | Finds the K-neighbors of a point. |
kneighbors_graph ([X, n_neighbors, mode]) | Computes the (weighted) graph of k-Neighbors for points in X |
set_params (**params) | Set the parameters of this estimator. |
__init__(n_neighbors=20, algorithm=’auto’, leaf_size=30, metric=’minkowski’, p=2, metric_params=None, contamination=0.1, n_jobs=1)
[source]
fit(X, y=None)
[source]
Fit the model using X as training data.
Parameters: |
X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape [n_samples, n_features], or [n_samples, n_samples] if metric=’precomputed’. |
---|---|
Returns: |
self : object Returns self. |
fit_predict(X, y=None)
[source]
“Fits the model to the training set X and returns the labels (1 inlier, -1 outlier) on the training set according to the LOF score and the contamination parameter.
Parameters: |
X : array-like, shape (n_samples, n_features), default=None The query sample or samples to compute the Local Outlier Factor w.r.t. to the training samples. |
---|---|
Returns: |
is_inlier : array, shape (n_samples,) Returns -1 for anomalies/outliers and 1 for inliers. |
get_params(deep=True)
[source]
Get parameters for this estimator.
Parameters: |
deep : boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. |
---|---|
Returns: |
params : mapping of string to any Parameter names mapped to their values. |
kneighbors(X=None, n_neighbors=None, return_distance=True)
[source]
Finds the K-neighbors of a point.
Returns indices of and distances to the neighbors of each point.
Parameters: |
X : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric == ‘precomputed’ The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. n_neighbors : int Number of neighbors to get (default is the value passed to the constructor). return_distance : boolean, optional. Defaults to True. If False, distances will not be returned |
---|---|
Returns: |
dist : array Array representing the lengths to points, only present if return_distance=True ind : array Indices of the nearest points in the population matrix. |
In the following example, we construct a NeighborsClassifier class from an array representing our data set and ask who’s the closest point to [1,1,1]
>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(n_neighbors=1) >>> neigh.fit(samples) NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> print(neigh.kneighbors([[1., 1., 1.]])) (array([[ 0.5]]), array([[2]]...))
As you can see, it returns [[0.5]], and [[2]], which means that the element is at distance 0.5 and is the third element of samples (indexes start at 0). You can also query for multiple points:
>>> X = [[0., 1., 0.], [1., 0., 1.]] >>> neigh.kneighbors(X, return_distance=False) array([[1], [2]]...)
kneighbors_graph(X=None, n_neighbors=None, mode=’connectivity’)
[source]
Computes the (weighted) graph of k-Neighbors for points in X
Parameters: |
X : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric == ‘precomputed’ The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. n_neighbors : int Number of neighbors for each sample. (default is value passed to the constructor). mode : {‘connectivity’, ‘distance’}, optional Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones and zeros, in ‘distance’ the edges are Euclidean distance between points. |
---|---|
Returns: |
A : sparse matrix in CSR format, shape = [n_samples, n_samples_fit] n_samples_fit is the number of samples in the fitted data A[i, j] is assigned the weight of edge that connects i to j. |
>>> X = [[0], [3], [1]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(n_neighbors=2) >>> neigh.fit(X) NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> A = neigh.kneighbors_graph(X) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 1.], [ 1., 0., 1.]])
set_params(**params)
[source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Returns: | self : |
---|
sklearn.neighbors.LocalOutlierFactor
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html