class sklearn.preprocessing.QuantileTransformer(n_quantiles=1000, output_distribution=’uniform’, ignore_implicit_zeros=False, subsample=100000, random_state=None, copy=True)
[source]
Transform features using quantiles information.
This method transforms the features to follow a uniform or a normal distribution. Therefore, for a given feature, this transformation tends to spread out the most frequent values. It also reduces the impact of (marginal) outliers: this is therefore a robust preprocessing scheme.
The transformation is applied on each feature independently. The cumulative density function of a feature is used to project the original values. Features values of new/unseen data that fall below or above the fitted range will be mapped to the bounds of the output distribution. Note that this transform is non-linear. It may distort linear correlations between variables measured at the same scale but renders variables measured at different scales more directly comparable.
Read more in the User Guide.
Parameters: |
n_quantiles : int, optional (default=1000) Number of quantiles to be computed. It corresponds to the number of landmarks used to discretize the cumulative density function. output_distribution : str, optional (default=’uniform’) Marginal distribution for the transformed data. The choices are ‘uniform’ (default) or ‘normal’. ignore_implicit_zeros : bool, optional (default=False) Only applies to sparse matrices. If True, the sparse entries of the matrix are discarded to compute the quantile statistics. If False, these entries are treated as zeros. subsample : int, optional (default=1e5) Maximum number of samples used to estimate the quantiles for computational efficiency. Note that the subsampling procedure may differ for value-identical sparse and dense matrices. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. Note that this is used by subsampling and smoothing noise. copy : boolean, optional, (default=True) Set to False to perform inplace transformation and avoid a copy (if the input is already a numpy array). |
---|---|
Attributes: |
quantiles_ : ndarray, shape (n_quantiles, n_features) The values corresponding the quantiles of reference. references_ : ndarray, shape(n_quantiles, ) Quantiles of references. |
See also
quantile_transform
StandardScaler
RobustScaler
For a comparison of the different scalers, transformers, and normalizers, see examples/preprocessing/plot_all_scaling.py.
>>> import numpy as np >>> from sklearn.preprocessing import QuantileTransformer >>> rng = np.random.RandomState(0) >>> X = np.sort(rng.normal(loc=0.5, scale=0.25, size=(25, 1)), axis=0) >>> qt = QuantileTransformer(n_quantiles=10, random_state=0) >>> qt.fit_transform(X) array([...])
fit (X[, y]) | Compute the quantiles used for transforming. |
fit_transform (X[, y]) | Fit to data, then transform it. |
get_params ([deep]) | Get parameters for this estimator. |
inverse_transform (X) | Back-projection to the original space. |
set_params (**params) | Set the parameters of this estimator. |
transform (X) | Feature-wise transformation of the data. |
__init__(n_quantiles=1000, output_distribution=’uniform’, ignore_implicit_zeros=False, subsample=100000, random_state=None, copy=True)
[source]
fit(X, y=None)
[source]
Compute the quantiles used for transforming.
Parameters: |
X : ndarray or sparse matrix, shape (n_samples, n_features) The data used to scale along the features axis. If a sparse matrix is provided, it will be converted into a sparse |
---|---|
Returns: |
self : object Returns self |
fit_transform(X, y=None, **fit_params)
[source]
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: |
X : numpy array of shape [n_samples, n_features] Training set. y : numpy array of shape [n_samples] Target values. |
---|---|
Returns: |
X_new : numpy array of shape [n_samples, n_features_new] Transformed array. |
get_params(deep=True)
[source]
Get parameters for this estimator.
Parameters: |
deep : boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. |
---|---|
Returns: |
params : mapping of string to any Parameter names mapped to their values. |
inverse_transform(X)
[source]
Back-projection to the original space.
Parameters: |
X : ndarray or sparse matrix, shape (n_samples, n_features) The data used to scale along the features axis. If a sparse matrix is provided, it will be converted into a sparse |
---|---|
Returns: |
Xt : ndarray or sparse matrix, shape (n_samples, n_features) The projected data. |
set_params(**params)
[source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Returns: | self : |
---|
transform(X)
[source]
Feature-wise transformation of the data.
Parameters: |
X : ndarray or sparse matrix, shape (n_samples, n_features) The data used to scale along the features axis. If a sparse matrix is provided, it will be converted into a sparse |
---|---|
Returns: |
Xt : ndarray or sparse matrix, shape (n_samples, n_features) The projected data. |
sklearn.preprocessing.QuantileTransformer
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTransformer.html