sklearn.utils.shuffle(*arrays, **options)
[source]
Shuffle arrays or sparse matrices in a consistent way
This is a convenience alias to resample(*arrays, replace=False)
to do random permutations of the collections.
Parameters: |
*arrays : sequence of indexable data-structures Indexable data-structures can be arrays, lists, dataframes or scipy sparse matrices with consistent first dimension. random_state : int, RandomState instance or None, optional (default=None) The seed of the pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by n_samples : int, None by default Number of samples to generate. If left to None this is automatically set to the first dimension of the arrays. |
---|---|
Returns: |
shuffled_arrays : sequence of indexable data-structures Sequence of shuffled views of the collections. The original arrays are not impacted. |
See also
It is possible to mix sparse and dense arrays in the same run:
>>> X = np.array([[1., 0.], [2., 1.], [0., 0.]]) >>> y = np.array([0, 1, 2]) >>> from scipy.sparse import coo_matrix >>> X_sparse = coo_matrix(X) >>> from sklearn.utils import shuffle >>> X, X_sparse, y = shuffle(X, X_sparse, y, random_state=0) >>> X array([[ 0., 0.], [ 2., 1.], [ 1., 0.]]) >>> X_sparse <3x2 sparse matrix of type '<... 'numpy.float64'>' with 3 stored elements in Compressed Sparse Row format> >>> X_sparse.toarray() array([[ 0., 0.], [ 2., 1.], [ 1., 0.]]) >>> y array([2, 1, 0]) >>> shuffle(y, n_samples=2, random_state=0) array([0, 1])
sklearn.utils.shuffle
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.utils.shuffle.html